Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

Related tags

Deep LearningVMNet
Overview

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation

Framework Fig

Created by Zeyu HU

Introduction

This work is based on our paper VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation, which appears at the IEEE International Conference on Computer Vision (ICCV) 2021.

In recent years, sparse voxel-based methods have become the state-of-the-arts for 3D semantic segmentation of indoor scenes, thanks to the powerful 3D CNNs. Nevertheless, being oblivious to the underlying geometry, voxel-based methods suffer from ambiguous features on spatially close objects and struggle with handling complex and irregular geometries due to the lack of geodesic information. In view of this, we present Voxel-Mesh Network (VMNet), a novel 3D deep architecture that operates on the voxel and mesh representations leveraging both the Euclidean and geodesic information. Intuitively, the Euclidean information extracted from voxels can offer contextual cues representing interactions between nearby objects, while the geodesic information extracted from meshes can help separate objects that are spatially close but have disconnected surfaces. To incorporate such information from the two domains, we design an intra-domain attentive module for effective feature aggregation and an inter-domain attentive module for adaptive feature fusion. Experimental results validate the effectiveness of VMNet: specifically, on the challenging ScanNet dataset for large-scale segmentation of indoor scenes, it outperforms the state-of-the-art SparseConvNet and MinkowskiNet (74.6% vs 72.5% and 73.6% in mIoU) with a simpler network structure (17M vs 30M and 38M parameters).

Citation

If you find our work useful in your research, please consider citing:

@misc{hu2021vmnet,
      title={VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation}, 
      author={Zeyu Hu and Xuyang Bai and Jiaxiang Shang and Runze Zhang and Jiayu Dong and Xin Wang and Guangyuan Sun and Hongbo Fu and Chiew-Lan Tai},
      year={2021},
      eprint={2107.13824},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

  • Our code is based on Pytorch. Please make sure CUDA and cuDNN are installed. One configuration has been tested:

    • Python 3.7
    • Pytorch 1.4.0
    • torchvision 0.5.0
    • CUDA 10.0
    • cudatoolkit 10.0.130
    • cuDNN 7.6.5
  • VMNet depends on the torch-geometric and torchsparse libraries. Please follow their installation instructions. One configuration has been tested, higher versions should work as well:

    • torch-geometric 1.6.3
    • torchsparse 1.1.0
  • We adapted VCGlib to generate pooling trace maps for vertex clustering and quadric error metrics.

    git clone https://github.com/cnr-isti-vclab/vcglib
    
    # QUADRIC ERROR METRICS
    cd vcglib/apps/tridecimator/
    qmake
    make
    
    # VERTEX CLUSTERING
    cd ../sample/trimesh_clustering
    qmake
    make
    

    Please add vcglib/apps/tridecimator and vcglib/apps/sample/trimesh_clustering to your environment path variable.

  • Other dependencies. One configuration has been tested:

    • open3d 0.9.0
    • plyfile 0.7.3
    • scikit-learn 0.24.0
    • scipy 1.6.0

Data Preparation

  • Please refer to https://github.com/ScanNet/ScanNet and https://github.com/niessner/Matterport to get access to the ScanNet and Matterport dataset. Our method relies on the .ply as well as the .labels.ply files. We take ScanNet dataset as example for the following instructions.

  • Create directories to store processed data.

    • 'path/to/processed_data/train/'
    • 'path/to/processed_data/val/'
    • 'path/to/processed_data/test/'
  • Prepare train data.

    python prepare_data.py --considered_rooms_path dataset/data_split/scannetv2_train.txt --in_path path/to/ScanNet/scans --out_path path/to/processed_data/train/
    
  • Prepare val data.

    python prepare_data.py --considered_rooms_path dataset/data_split/scannetv2_val.txt --in_path path/to/ScanNet/scans --out_path path/to/processed_data/val/
    
  • Prepare test data.

    python prepare_data.py --test_split --considered_rooms_path dataset/data_split/scannetv2_test.txt --in_path path/to/ScanNet/scans_test --out_path path/to/processed_data/test/
    

Train

  • On train/val/test setting.

    CUDA_VISIBLE_DEVICES=0 python run.py --train --exp_name name_you_want --data_path path/to/processed_data
    
  • On train+val/test setting (for ScanNet benchmark).

    CUDA_VISIBLE_DEVICES=0 python run.py --train_benchmark --exp_name name_you_want --data_path path/to/processed_data
    

Inference

  • Validation. Pretrained model (73.3% mIoU on ScanNet Val). Please download and put into directory check_points/val_split.

    CUDA_VISIBLE_DEVICES=0 python run.py --val --exp_name val_split --data_path path/to/processed_data
    
  • Test. Pretrained model (74.6% mIoU on ScanNet Test). Please download and put into directory check_points/test_split. TxT files for benchmark submission will be saved in directory test_results/.

    CUDA_VISIBLE_DEVICES=0 python run.py --test --exp_name test_split --data_path path/to/processed_data
    

Acknowledgements

Our code is built upon torch-geometric, torchsparse and dcm-net.

License

Our code is released under MIT License (see LICENSE file for details).

Owner
HU Zeyu
HU Zeyu
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022