Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

Overview

AmbientGAN: Generative models from lossy measurements

This repository provides code to reproduce results from the paper AmbientGAN: Generative models from lossy measurements.

The training setup is as in the following diagram:

Here are a few example results:

Measured Baseline AmbientGAN (ours)

Few more samples from AmbientGAN models trained with 1-D projections:

Pad-Rotate-Project Pad-Rotate-Project-theta

The rest of the README describes how to reproduce the results.

Requirements

  • Python 2.7
  • Tensorflow >= 1.4.0
  • matplotlib
  • scipy
  • numpy
  • cvxpy
  • scikit-learn
  • tqdm
  • opencv-python
  • pandas

For pip installation, use $ pip install -r requirements.txt

Get the data

  • MNIST data is automatically downloaded
  • Get the celebA dataset here and put the jpeg files in ./data/celebA/
  • Get the CIFAR-10 python data from here and put it in ./data/cifar10/cifar-10-batches-py/*

Get inference models

We need inference models for computing the inception score.

  • For MNIST, you can train your own by

    cd ./src/mnist/inf
    python train.py
    

    [TODO]: Provide a pretrained model.

  • Inception model for use with CIFAR-10 is automatically downloaded.

Create experiment scripts

Run ./create_scripts/create_scripts.sh

This will create scripts for all the experiments in the paper.

[Optional] If you want to run only a subset of experiments you can define the grid in ./create_scripts/DATASET_NAME/grid_*.sh or if you wish to tweak a lot of parameters, you can change ./create_scripts/DATASET_NAME/base_script.sh. Then run ./create_scripts/create_scripts.sh as above to create the corresponding scripts (remember to remove any previous files from ./scripts/)

Run experiments

We provide scripts to train on multiple GPUs in parallel. For example, if you wish to use 4 GPUs, you can run: ./run_scripts/run_sequentially_parallel.sh "0 1 2 3"

This will start 4 GNU screens. Each program within the screen will attempt to acquire and run experiments from ./scripts/, one at a time. Each experiment run will save samples, checkpoints, etc. to ./results/.

See results as you train

Samples

You can see samples for each experiment in ./results/samples/EXPT_DIR/

EXPT_DIR is defined based on the hyperparameters of the experiment. See ./src/commons/dir_def.py to see how this is done.

Quantitative plots

Run

python src/aggregator_mnist.py
python src/aggregator_cifar.py

This will create pickle files in ./results/ with the relevant data in a Pandas dataframe.

Now use the ipython notebooks ./plotting_mnist.ipynb and ./plotting_cifar.ipynb to get the relevant plots. The generated plots are also saved to ./results/plots/ (make sure this directory exists)

Owner
Ashish Bora
Ashish Bora
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022