Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

Overview

AmbientGAN: Generative models from lossy measurements

This repository provides code to reproduce results from the paper AmbientGAN: Generative models from lossy measurements.

The training setup is as in the following diagram:

Here are a few example results:

Measured Baseline AmbientGAN (ours)

Few more samples from AmbientGAN models trained with 1-D projections:

Pad-Rotate-Project Pad-Rotate-Project-theta

The rest of the README describes how to reproduce the results.

Requirements

  • Python 2.7
  • Tensorflow >= 1.4.0
  • matplotlib
  • scipy
  • numpy
  • cvxpy
  • scikit-learn
  • tqdm
  • opencv-python
  • pandas

For pip installation, use $ pip install -r requirements.txt

Get the data

  • MNIST data is automatically downloaded
  • Get the celebA dataset here and put the jpeg files in ./data/celebA/
  • Get the CIFAR-10 python data from here and put it in ./data/cifar10/cifar-10-batches-py/*

Get inference models

We need inference models for computing the inception score.

  • For MNIST, you can train your own by

    cd ./src/mnist/inf
    python train.py
    

    [TODO]: Provide a pretrained model.

  • Inception model for use with CIFAR-10 is automatically downloaded.

Create experiment scripts

Run ./create_scripts/create_scripts.sh

This will create scripts for all the experiments in the paper.

[Optional] If you want to run only a subset of experiments you can define the grid in ./create_scripts/DATASET_NAME/grid_*.sh or if you wish to tweak a lot of parameters, you can change ./create_scripts/DATASET_NAME/base_script.sh. Then run ./create_scripts/create_scripts.sh as above to create the corresponding scripts (remember to remove any previous files from ./scripts/)

Run experiments

We provide scripts to train on multiple GPUs in parallel. For example, if you wish to use 4 GPUs, you can run: ./run_scripts/run_sequentially_parallel.sh "0 1 2 3"

This will start 4 GNU screens. Each program within the screen will attempt to acquire and run experiments from ./scripts/, one at a time. Each experiment run will save samples, checkpoints, etc. to ./results/.

See results as you train

Samples

You can see samples for each experiment in ./results/samples/EXPT_DIR/

EXPT_DIR is defined based on the hyperparameters of the experiment. See ./src/commons/dir_def.py to see how this is done.

Quantitative plots

Run

python src/aggregator_mnist.py
python src/aggregator_cifar.py

This will create pickle files in ./results/ with the relevant data in a Pandas dataframe.

Now use the ipython notebooks ./plotting_mnist.ipynb and ./plotting_cifar.ipynb to get the relevant plots. The generated plots are also saved to ./results/plots/ (make sure this directory exists)

Owner
Ashish Bora
Ashish Bora
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022