Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

Overview

FaderNetworks

PyTorch implementation of Fader Networks (NIPS 2017).

Fader Networks can generate different realistic versions of images by modifying attributes such as gender or age group. They can swap multiple attributes at a time, and continuously interpolate between each attribute value. In this repository we provide the code to reproduce the results presented in the paper, as well as trained models.

Single-attribute swap

Below are some examples of different attribute swaps:

Multi-attributes swap

The Fader Networks are also designed to disentangle multiple attributes at a time:

Model

The main branch of the model (Inference Model), is an autoencoder of images. Given an image x and an attribute y (e.g. male/female), the decoder is trained to reconstruct the image from the latent state E(x) and y. The other branch (Adversarial Component), is composed of a discriminator trained to predict the attribute from the latent state. The encoder of the Inference Model is trained not only to reconstruct the image, but also to fool the discriminator, by removing from E(x) the information related to the attribute. As a result, the decoder needs to consider y to properly reconstruct the image. During training, the model is trained using real attribute values, but at test time, y can be manipulated to generate variations of the original image.

Dependencies

Installation

Simply clone the repository:

git clone https://github.com/facebookresearch/FaderNetworks.git
cd FaderNetworks

Dataset

Download the aligned and cropped CelebA dataset from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Extract all images and move them to the data/img_align_celeba/ folder. There should be 202599 images. The dataset also provides a file list_attr_celeba.txt containing the list of the 40 attributes associated with each image. Move it to data/. Then simply run:

cd data
./preprocess.py

It will resize images, and create 2 files: images_256_256.pth and attributes.pth. The first one contains a tensor of size (202599, 3, 256, 256) containing the concatenation of all resized images. Note that you can update the image size in preprocess.py to work with different resolutions. The second file is a pre-processed version of the attributes.

Pretrained models

You can download pretrained classifiers and Fader Networks by running:

cd models
./download.sh

Train your own models

Train a classifier

To train your own model you first need to train a classifier to let the model evaluate the swap quality during the training. Training a good classifier is relatively simple for most attributes, and a good model can be trained in a few minutes. We provide a trained classifier for all attributes in models/classifier256.pth. Note that the classifier does not need to be state-of-the-art, it is not used during the training process, but is just here to monitor the swap quality. If you want to train your own classifier, you can run classifier.py, using the following parameters:

python classifier.py

# Main parameters
--img_sz 256                  # image size
--img_fm 3                    # number of feature maps
--attr "*"                    # attributes list. "*" for all attributes

# Network architecture
--init_fm 32                  # number of feature maps in the first layer
--max_fm 512                  # maximum number of feature maps
--hid_dim 512                 # hidden layer size

# Training parameters
--v_flip False                # randomly flip images vertically (data augmentation)
--h_flip True                 # randomly flip images horizontally (data augmentation)
--batch_size 32               # batch size
--optimizer "adam,lr=0.0002"  # optimizer
--clip_grad_norm 5            # clip gradient L2 norm
--n_epochs 1000               # number of epochs
--epoch_size 50000            # number of images per epoch

# Reload
--reload ""                   # reload a trained classifier
--debug False                 # debug mode (if True, load a small subset of the dataset)

Train a Fader Network

You can train a Fader Network with train.py. The autoencoder can receive feedback from:

  • The image reconstruction loss
  • The latent discriminator loss
  • The PatchGAN discriminator loss
  • The classifier loss

In the paper, only the first two losses are used, but the two others could improve the results further. You can tune the impact of each of these losses with the lambda_ae, lambda_lat_dis, lambda_ptc_dis, and lambda_clf_dis coefficients. Below is a complete list of all parameters:

# Main parameters
--img_sz 256                      # image size
--img_fm 3                        # number of feature maps
--attr "Male"                     # attributes list. "*" for all attributes

# Networks architecture
--instance_norm False             # use instance normalization instead of batch normalization
--init_fm 32                      # number of feature maps in the first layer
--max_fm 512                      # maximum number of feature maps
--n_layers 6                      # number of layers in the encoder / decoder
--n_skip 0                        # number of skip connections
--deconv_method "convtranspose"   # deconvolution method
--hid_dim 512                     # hidden layer size
--dec_dropout 0                   # dropout in the decoder
--lat_dis_dropout 0.3             # dropout in the latent discriminator

# Training parameters
--n_lat_dis 1                     # number of latent discriminator training steps
--n_ptc_dis 0                     # number of PatchGAN discriminator training steps
--n_clf_dis 0                     # number of classifier training steps
--smooth_label 0.2                # smooth discriminator labels
--lambda_ae 1                     # autoencoder loss coefficient
--lambda_lat_dis 0.0001           # latent discriminator loss coefficient
--lambda_ptc_dis 0                # PatchGAN discriminator loss coefficient
--lambda_clf_dis 0                # classifier loss coefficient
--lambda_schedule 500000          # lambda scheduling (0 to disable)
--v_flip False                    # randomly flip images vertically (data augmentation)
--h_flip True                     # randomly flip images horizontally (data augmentation)
--batch_size 32                   # batch size
--ae_optimizer "adam,lr=0.0002"   # autoencoder optimizer
--dis_optimizer "adam,lr=0.0002"  # discriminator optimizer
--clip_grad_norm 5                # clip gradient L2 norm
--n_epochs 1000                   # number of epochs
--epoch_size 50000                # number of images per epoch

# Reload
--ae_reload ""                    # reload pretrained autoencoder
--lat_dis_reload ""               # reload pretrained latent discriminator
--ptc_dis_reload ""               # reload pretrained PatchGAN discriminator
--clf_dis_reload ""               # reload pretrained classifier
--eval_clf ""                     # evaluation classifier (trained with classifier.py)
--debug False                     # debug mode (if True, load a small subset of the dataset)

Generate interpolations

Given a trained model, you can use it to swap attributes of images in the dataset. Below are examples using the pretrained models:

# Narrow Eyes
python interpolate.py --model_path models/narrow_eyes.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path narrow_eyes.png

# Eyeglasses
python interpolate.py --model_path models/eyeglasses.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path eyeglasses.png

# Age
python interpolate.py --model_path models/young.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path young.png

# Gender
python interpolate.py --model_path models/male.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path male.png

# Pointy nose
python interpolate.py --model_path models/pointy_nose.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path pointy_nose.png

These commands will generate images with 10 rows of 12 columns with the interpolated images. The first column corresponds to the original image, the second is the reconstructed image (without alteration of the attribute), and the remaining ones correspond to the interpolated images. alpha_min and alpha_max represent the range of the interpolation. Values superior to 1 represent generations over the True / False range of the boolean attribute in the model. Note that the variations of some attributes may only be noticeable for high values of alphas. For instance, for the "eyeglasses" or "gender" attributes, alpha_max=2 is usually enough, while for the "age" or "narrow eyes" attributes, it is better to go up to alpha_max=10.

References

If you find this code useful, please consider citing:

Fader Networks: Manipulating Images by Sliding Attributes - G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, M'A. Ranzato

@inproceedings{lample2017fader,
  title={Fader Networks: Manipulating Images by Sliding Attributes},
  author={Lample, Guillaume and Zeghidour, Neil and Usunier, Nicolas and Bordes, Antoine and DENOYER, Ludovic and others},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5963--5972},
  year={2017}
}

Contact: [email protected], [email protected]

Owner
Facebook Research
Facebook Research
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022