Korean Sentence Embedding Repository

Overview

Korean-Sentence-Embedding

๐Ÿญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.

Baseline Models

Baseline models used for korean sentence embedding - KLUE-PLMs

Model Embedding size Hidden size # Layers # Heads
KLUE-BERT-base 768 768 12 12
KLUE-RoBERTa-base 768 768 12 12

NOTE: All the pretrained models are uploaded in Huggingface Model Hub. Check https://huggingface.co/klue.

How to start

  • Get datasets to train or test.
bash get_model_dataset.sh
  • If you want to do inference quickly, download the pre-trained models and then you can start some downstream tasks.
bash get_model_checkpoint.sh
cd KoSBERT/
python SemanticSearch.py

Available Models

  1. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [SBERT]-[EMNLP 2019]
  2. SimCSE: Simple Contrastive Learning of Sentence Embeddings [SimCSE]-[EMNLP 2021]

KoSentenceBERT

  • ๐Ÿค— Model Training
  • Dataset
    • Train: snli_1.0_train.ko.tsv (First phase, training NLI), sts-train.tsv (Second phase, continued training STS)
    • Valid: sts-dev.tsv
    • Test: sts-test.tsv

KoSimCSE

  • ๐Ÿค— Model Training
  • Dataset
    • Train: snli_1.0_train.ko.tsv + multinli.train.ko.tsv
    • Valid: sts-dev.tsv
    • Test: sts-test.tsv

Performance

  • Semantic Textual Similarity test set results
Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERTโ€ SKT 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSBERTbase 82.13 82.25 80.67 80.75 80.69 80.78 77.96 77.90
KoSRoBERTabase 80.70 81.03 80.97 81.06 80.84 80.97 79.20 78.93
KoSimCSE-BERTโ€ SKT 82.12 82.56 81.84 81.63 81.99 81.74 79.55 79.19
KoSimCSE-BERTbase 82.73 83.51 82.32 82.78 82.43 82.88 77.86 76.70
KoSimCSE-RoBERTabase 83.64 84.05 83.32 83.84 83.33 83.79 80.92 79.84

Downstream Tasks

  • KoSBERT: Semantic Search, Clustering
python SemanticSearch.py
python Clustering.py
  • KoSimCSE: Semantic Search
python SemanticSearch.py

Semantic Search (KoSBERT)

from sentence_transformers import SentenceTransformer, util
import numpy as np

model_path = '../Checkpoint/KoSBERT/kosbert-klue-bert-base'

embedder = SentenceTransformer(model_path)

# Corpus with example sentences
corpus = ['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.',
          '๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.',
          'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.',
          '์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.']

corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)

# Query sentences:
queries = ['ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.',
           '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.',
           '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
top_k = 5
for query in queries:
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
    cos_scores = cos_scores.cpu()

    #We use np.argpartition, to only partially sort the top_k results
    top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")

    for idx in top_results[0:top_k]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))
  • Results are as follows :

Query: ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.

Top 5 most similar sentences in corpus:
ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค. (Score: 0.6141)
ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค. (Score: 0.5952)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.1231)
ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค. (Score: 0.0752)
๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค. (Score: 0.0486)


======================


Query: ๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.

Top 5 most similar sentences in corpus:
์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.6656)
์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. (Score: 0.2988)
ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.1566)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.1112)
ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค. (Score: 0.0262)


======================


Query: ์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.

Top 5 most similar sentences in corpus:
์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. (Score: 0.7570)
๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค. (Score: 0.3658)
์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.3583)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.0505)
๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค. (Score: -0.0087)

Clustering (KoSBERT)

from sentence_transformers import SentenceTransformer, util
import numpy as np

model_path = '../Checkpoint/KoSBERT/kosbert-klue-bert-base'

embedder = SentenceTransformer(model_path)

# Corpus with example sentences
corpus = ['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.',
          '๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.',
          'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.',
          '์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.',
          '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.',
          '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

corpus_embeddings = embedder.encode(corpus)

# Then, we perform k-means clustering using sklearn:
from sklearn.cluster import KMeans

num_clusters = 5
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_

clustered_sentences = [[] for i in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
    clustered_sentences[cluster_id].append(corpus[sentence_id])

for i, cluster in enumerate(clustered_sentences):
    print("Cluster ", i+1)
    print(cluster)
    print("")
  • Results are as follows:
Cluster  1
['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.']

Cluster  2
['์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.', '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.']

Cluster  3
['ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.', '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.']

Cluster  4
['์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.', '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

Cluster  5
['๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.', 'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.']

References

@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@inproceedings{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
@article{ham2020kornli,
  title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal={arXiv preprint arXiv:2004.03289},
  year={2020}
}
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
Owner
Self-softmax
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Cแบฃi thiแป‡n Elasticsearch trong bร i toรกn semantic search sแปญ dแปฅng phฦฐฦกng phรกp Sentence Embeddings

Cแบฃi thiแป‡n Elasticsearch trong bร i toรกn semantic search sแปญ dแปฅng phฦฐฦกng phรกp Sentence Embeddings Trong bร i viแบฟt nร y mรฌnh sแบฝ sแปญ dแปฅng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
Topic Modelling for Humans

gensim โ€“ Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

่•‰ๅคช็‹ผ 73 Dec 11, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: ๅคๆ–‡่‡ช็„ถ่ฏญ่จ€ๅค„็†ๆจกๅž‹ๅˆ้›†, ๆ”ถๅฝ•ไบ’่”็ฝ‘ไธŠ็š„ๅคๆ–‡็›ธๅ…ณๆจกๅž‹ๅŠ่ต„ๆบ. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview ่ฟ™ไธชๅฐ้กน็›ฎๆ˜ฏๅ—ไนไบŽๅˆ†ไบซ็š„่‹ๅ‰‘ๆž—ๅคงไฝฌ่ฟ™็ฏ‡p-tuning ๆ–‡็ซ ๅฏๅ‘๏ผŒไนŸๅฎž็Žฐไบ†ไธชไฝฟ็”จP-tuning่ฟ›่กŒNLUๅˆ†็ฑป็š„ไปปๅŠก๏ผŒ ๆ€่ทฏๆ˜ฏไธ€ๆ ท็š„๏ผŒpromptๅฎž็Žฐๆ–นๅผๆœ‰ไธๅŒ๏ผŒ่ฟ™้‡Œๆ˜ฏๅฐ†[unused*]็š„embeddingsๅ‚ๆ•ฐๆŠฝๅ–ๅ‡บ็”จไบŽๅˆๅง‹ๅŒ–prompt_embedๅŽ

3 Dec 29, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022