Lumped-element impedance calculator and frequency-domain plotter.

Related tags

Text Data & NLPfastZ
Overview

fastZ: Lumped-Element Impedance Calculator

fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include:

  • Support for lumped-parameter resistors, capacitors, and inductors.
  • Construction of series and parallel impedance networks with the + and // operators.
  • Element labels with subscript assignment using the subscript operator [].
  • Impedance calculation at a single frequency or over a numpy array using the call operator ().
  • Frequency-domain Bode magnitude plots with curve annotation.

You can also compute circuit transfer functions represented as the ratio of two impedance networks. See the PID compensator in the Examples section for more information.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np

Zin = ( L(v=22e-6) + ( C(v=100e-6) // R(v=2.0) )['p'] )['in']
fig, ax = bodez(Zin, ff=np.logspace(2, 5, 1000), zlines='Zin Zp', refzlines='R L C')

png

Installation

Install the fastZ package with pip:

pip install fastz

Dependencies: numpy and matplotlib

Usage

Constructing Impedance Models

Many impedance networks can be represented by series and parallel combinations of RLC elements. The fastZ package provides the classes R, L, and C along with the series and parallel operators + and // for this purpose. For example, a resistor R1 with a value of 50Ω is constructed as:

R1 = R('1', 50)
str(R1)
'R1[50Ω]'

The first argument to the constructor is the resistor's subscript. It gets appended to the the resistor's prefix 'R' to form the label 'R1'. The second argument is the resistor's value in Ohms. Both the subscript and value are optional, but keep the following rules in mind:

  • If you omit the subscript, you must pass the value using the keyword argument v.
  • If you omit the value, you must later provide it when evaulating or plotting the impedance (more about this below).

The LC constructors are similar, except that L accepts a value in Henreies (H) and C in Farads (F).

The addition operator + constructs series impedance networks. For example, we can build a series RC network using:

Zs = R(v=10.0) + C(v=1e-6)
str(Zs)
'(R[10.0Ω] + C[1e-06F])'

Similarly, the floor division operator // constructs parallel impedance networks. For example, a parallel RL network is constructed as:

Zp = R(v=100) // L(v=22e-6)
str(Zp)
'(R[100Ω] || L[2.2e-05H])'

Create more complex impedance networks by combining the series and parallel operators in hierarchy:

Zc = (R('1') + C('1')) // (R('2') + L('2') + C('2')) + L('3') // C('3')
str(Zc)
'(((R1 + C1) || (R2 + L2 + C2)) + (L3 || C3))'

Evalulating Impedance Models

Call an impedance with a single frequency or numpy array of frequencies using the call operator () to evalulate the impedance at those frequencies. For example, suppose we have the impedance:

Z = L(v=22e-6) + C(v=100e-6) // R(v=2.0)

You can evalulate its value at a frequency of 4kHz using:

Z(3e3)
(0.1314731604517404-0.0809519077494511j)

Or evalulate the impedance over multiple frequencies using:

Z(np.array([1, 1e3, 100e3]))
array([1.99999684e+00-2.37504008e-03j, 7.75453273e-01-8.36233246e-01j,
       1.26643460e-04+1.38070932e+01j])

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments to the call operator:

Z(3e3, L=100e-6, R=100.0)
(0.0028143981128015963+1.3544540460266075j)

Plotting Impedance Models

The bodez function provided within the plotting module draws the Bode magnitude plot of an impedance given a numpy array of the frequencies at which to evaulate the impedance. Use the optional string argument zlines to specify the whitespace-separated labels of additional sub-impedances to draw on the plot. The optional string argument refzlines specifies the labels of sub-impedances to plot in the reference-line style (dashed gray by default.) To change the horizontal postion of an impedances curve's annotation, append a colon followed by the horizontal location in frequency units. For example:

Z = (R(v=1) // L(v=100e-6) // C(v=200e-6))['p'] + L('2', 10e-6)
fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Z:30000 Zp:10000', refzlines='R:4000 L:100e3 C L2')

png

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments as well:

fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Zp', refzlines='R L C L2', R=10, C=50e-6)

png

Using Subscripts

Subscripts are string or integer suffix values that help identify resistors, inductors, capacitors, and composite impedances. To assign a subscript to an RLC element, pass it to the constructor:

La = L('a', 1e-6)
str(La)
'La[1e-06H]'

You can assign a subscript to a composite impedance using the subscript operator []:

Zin = (R(v=1.0) + La)['in']
str(Zin)
'Zin:(R[1.0Ω] + La[1e-06H])'

Bode plot annotations reflect the appropriate subscripts:

fig, ax = bodez(Zin, ff=np.logspace(4, 7, 1000), refzlines='R La')

png

Accessing Sub-Impedances

We might build an impedance network consisting of multiple labeled subportions. For example:

Z1 = (C('1') + L('1'))['a'] // (R('2') + L('2'))['b'] // C('3')
str(Z1)
'(Za:(C1 + L1) || Zb:(R2 + L2) || C3)'

Sometimes it may be useful to access the sub-impedances Za and Zb, or the individual RLC elements. Use the subz method to do so:

Za = Z1.subz('Za')
str(Za)
'Za:(C1 + L1)'
C1 = Z1.subz('C1')
str(C1)
'C1'

Internally, the bodez plotting function relies on the subz method to plot additional impedances specified in the zlines and refzlines arguments

Computing Break Frequencies

The breakfreq method computes RC, RL, and LC break frequencies. A break frequency is the frequency at which one element's impedance magnitude equals the other element's impedance magnitude. Suppose we have the following parallel RLC network:

Z1 = R(v=1) // L(v=100e-6) // C(v=22e-6)
str(Z1)
'(R[1Ω] || L[0.0001H] || C[2.2e-05F])'

The following draws vertical lines at the RC, RL, and LC break frequencies:

fig, ax = bodez(Z1, ff=np.logspace(2.5, 4.5, 1000), refzlines='R L:2200 C:5000')
for fb in [Z1.breakfreq('R L'), Z1.breakfreq('L C'), Z1.breakfreq('R C')]:
    ax.axvline(x=fb, ls=':', color='red')

ax.set_ylim((0.1, 3))
(0.1, 3)

png

Examples

SMPS Output Impedance

Here's a model of the small-signal output impedance of a Buck, Boost, or Buck-Boost converter (switching-mode power supplies):

SMPS output impedance

Le is the effective output inductance of the converter, C is the output capacitor, and Rload represents the load. To make things a bit more interesting, we've included the inductor's ohmic loss as RL and the capacitor's equivalent series inductance and resistance as Lesl and Resr, respectively. We construct and evaluate a fastZ model with some sample component values below:

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt

Zout = ( R('load', 10) // (L('esl', 1e-6) + C(v=100e-6) + R('esr', 1))['cap'] // (L('e', 44e-6) + R('L', 3.0))['ind'] )['out']
bodez(Zout, ff=np.logspace(1, 7, 1000), 
      zlines='Zout:10e3 Zcap:10e3 Zind:10e3', 
      refzlines='Rload C:300 Lesl:120e3 Resr Le:7e3 RL')
plt.ylim((0.6, 12))
plt.show()

png

PID Compensator

This op amp circuit could appear in a feedback control loop as a PID (lead-lag) compensator:

PID compensator

VREF represents the setpoint of the feedback system (assumed constant in this case), vfb is the feedback voltage signal, and vc is the compensated output voltage signal. The transfer relationship is

Vc(s) = Gc(s)·Ve(s)

where ve = VREF - vfb is the error signal and Gc(s) = Z1(s)/Z2(s) is the compensator's transfer function. We can use fastZ to compute Gc since it is the ratio of two lumped-element impedance networks.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import EngFormatter

# construct models of Z1 and Z2
Z1 = ( R('1', 30e3) + C('1', 20e-9) )['1']
Z2 = ( R('2', 10e3) // C('2', 5e-9) + R('3', 2e3) )['2']

# evalulate frequency response of Gc
ff = np.logspace(1, 6, 1000)
GGc = Z1(ff) / Z2(ff)

# plot the results
fig, (axm, axp) = plt.subplots(2, 1, figsize=(6, 8))
axz = axm.twinx()

bodez(Z1, ff, ax=axz, zlines='Z1:1e3', refzlines='R1 C1:5e3')
bodez(Z2, ff, ax=axz, zlines='Z2:1e3', refzlines='R2:800e3 R3 C2:200')
axm.loglog(ff, np.abs(GGc), color='purple')
axp.semilogx(ff, np.angle(GGc)*180/np.pi, color='purple')
axm.annotate('$|G_c|$', (ff[-1], abs(GGc[-1])), 
             ha='center', va='center', backgroundcolor='w')
axp.annotate('$\\angle G_c$', (ff[-10], np.angle(GGc[-10])*180/np.pi), 
             ha='center', va='center', backgroundcolor='w')

axm.xaxis.set_major_formatter(EngFormatter())
axp.xaxis.set_major_formatter(EngFormatter())
axm.set_ylabel('Compensator Gain (V/V)')
axp.set_ylabel('Compensator Phase Shift (°)')
axp.set_xlabel('Frequency (Hz)')
axm.set_ylim((1, 110))
axz.set_ylim((1e3, 1e6))
plt.show()

png

You can see that there's a phase boost of about 40° at 10kHz. An inverted zero appears at about 300Hz to boost the low-frequency gain.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Wesley Hileman - [email protected]

Owner
Wesley Hileman
Wesley Hileman
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022