Lumped-element impedance calculator and frequency-domain plotter.

Related tags

Text Data & NLPfastZ
Overview

fastZ: Lumped-Element Impedance Calculator

fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include:

  • Support for lumped-parameter resistors, capacitors, and inductors.
  • Construction of series and parallel impedance networks with the + and // operators.
  • Element labels with subscript assignment using the subscript operator [].
  • Impedance calculation at a single frequency or over a numpy array using the call operator ().
  • Frequency-domain Bode magnitude plots with curve annotation.

You can also compute circuit transfer functions represented as the ratio of two impedance networks. See the PID compensator in the Examples section for more information.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np

Zin = ( L(v=22e-6) + ( C(v=100e-6) // R(v=2.0) )['p'] )['in']
fig, ax = bodez(Zin, ff=np.logspace(2, 5, 1000), zlines='Zin Zp', refzlines='R L C')

png

Installation

Install the fastZ package with pip:

pip install fastz

Dependencies: numpy and matplotlib

Usage

Constructing Impedance Models

Many impedance networks can be represented by series and parallel combinations of RLC elements. The fastZ package provides the classes R, L, and C along with the series and parallel operators + and // for this purpose. For example, a resistor R1 with a value of 50Ω is constructed as:

R1 = R('1', 50)
str(R1)
'R1[50Ω]'

The first argument to the constructor is the resistor's subscript. It gets appended to the the resistor's prefix 'R' to form the label 'R1'. The second argument is the resistor's value in Ohms. Both the subscript and value are optional, but keep the following rules in mind:

  • If you omit the subscript, you must pass the value using the keyword argument v.
  • If you omit the value, you must later provide it when evaulating or plotting the impedance (more about this below).

The LC constructors are similar, except that L accepts a value in Henreies (H) and C in Farads (F).

The addition operator + constructs series impedance networks. For example, we can build a series RC network using:

Zs = R(v=10.0) + C(v=1e-6)
str(Zs)
'(R[10.0Ω] + C[1e-06F])'

Similarly, the floor division operator // constructs parallel impedance networks. For example, a parallel RL network is constructed as:

Zp = R(v=100) // L(v=22e-6)
str(Zp)
'(R[100Ω] || L[2.2e-05H])'

Create more complex impedance networks by combining the series and parallel operators in hierarchy:

Zc = (R('1') + C('1')) // (R('2') + L('2') + C('2')) + L('3') // C('3')
str(Zc)
'(((R1 + C1) || (R2 + L2 + C2)) + (L3 || C3))'

Evalulating Impedance Models

Call an impedance with a single frequency or numpy array of frequencies using the call operator () to evalulate the impedance at those frequencies. For example, suppose we have the impedance:

Z = L(v=22e-6) + C(v=100e-6) // R(v=2.0)

You can evalulate its value at a frequency of 4kHz using:

Z(3e3)
(0.1314731604517404-0.0809519077494511j)

Or evalulate the impedance over multiple frequencies using:

Z(np.array([1, 1e3, 100e3]))
array([1.99999684e+00-2.37504008e-03j, 7.75453273e-01-8.36233246e-01j,
       1.26643460e-04+1.38070932e+01j])

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments to the call operator:

Z(3e3, L=100e-6, R=100.0)
(0.0028143981128015963+1.3544540460266075j)

Plotting Impedance Models

The bodez function provided within the plotting module draws the Bode magnitude plot of an impedance given a numpy array of the frequencies at which to evaulate the impedance. Use the optional string argument zlines to specify the whitespace-separated labels of additional sub-impedances to draw on the plot. The optional string argument refzlines specifies the labels of sub-impedances to plot in the reference-line style (dashed gray by default.) To change the horizontal postion of an impedances curve's annotation, append a colon followed by the horizontal location in frequency units. For example:

Z = (R(v=1) // L(v=100e-6) // C(v=200e-6))['p'] + L('2', 10e-6)
fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Z:30000 Zp:10000', refzlines='R:4000 L:100e3 C L2')

png

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments as well:

fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Zp', refzlines='R L C L2', R=10, C=50e-6)

png

Using Subscripts

Subscripts are string or integer suffix values that help identify resistors, inductors, capacitors, and composite impedances. To assign a subscript to an RLC element, pass it to the constructor:

La = L('a', 1e-6)
str(La)
'La[1e-06H]'

You can assign a subscript to a composite impedance using the subscript operator []:

Zin = (R(v=1.0) + La)['in']
str(Zin)
'Zin:(R[1.0Ω] + La[1e-06H])'

Bode plot annotations reflect the appropriate subscripts:

fig, ax = bodez(Zin, ff=np.logspace(4, 7, 1000), refzlines='R La')

png

Accessing Sub-Impedances

We might build an impedance network consisting of multiple labeled subportions. For example:

Z1 = (C('1') + L('1'))['a'] // (R('2') + L('2'))['b'] // C('3')
str(Z1)
'(Za:(C1 + L1) || Zb:(R2 + L2) || C3)'

Sometimes it may be useful to access the sub-impedances Za and Zb, or the individual RLC elements. Use the subz method to do so:

Za = Z1.subz('Za')
str(Za)
'Za:(C1 + L1)'
C1 = Z1.subz('C1')
str(C1)
'C1'

Internally, the bodez plotting function relies on the subz method to plot additional impedances specified in the zlines and refzlines arguments

Computing Break Frequencies

The breakfreq method computes RC, RL, and LC break frequencies. A break frequency is the frequency at which one element's impedance magnitude equals the other element's impedance magnitude. Suppose we have the following parallel RLC network:

Z1 = R(v=1) // L(v=100e-6) // C(v=22e-6)
str(Z1)
'(R[1Ω] || L[0.0001H] || C[2.2e-05F])'

The following draws vertical lines at the RC, RL, and LC break frequencies:

fig, ax = bodez(Z1, ff=np.logspace(2.5, 4.5, 1000), refzlines='R L:2200 C:5000')
for fb in [Z1.breakfreq('R L'), Z1.breakfreq('L C'), Z1.breakfreq('R C')]:
    ax.axvline(x=fb, ls=':', color='red')

ax.set_ylim((0.1, 3))
(0.1, 3)

png

Examples

SMPS Output Impedance

Here's a model of the small-signal output impedance of a Buck, Boost, or Buck-Boost converter (switching-mode power supplies):

SMPS output impedance

Le is the effective output inductance of the converter, C is the output capacitor, and Rload represents the load. To make things a bit more interesting, we've included the inductor's ohmic loss as RL and the capacitor's equivalent series inductance and resistance as Lesl and Resr, respectively. We construct and evaluate a fastZ model with some sample component values below:

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt

Zout = ( R('load', 10) // (L('esl', 1e-6) + C(v=100e-6) + R('esr', 1))['cap'] // (L('e', 44e-6) + R('L', 3.0))['ind'] )['out']
bodez(Zout, ff=np.logspace(1, 7, 1000), 
      zlines='Zout:10e3 Zcap:10e3 Zind:10e3', 
      refzlines='Rload C:300 Lesl:120e3 Resr Le:7e3 RL')
plt.ylim((0.6, 12))
plt.show()

png

PID Compensator

This op amp circuit could appear in a feedback control loop as a PID (lead-lag) compensator:

PID compensator

VREF represents the setpoint of the feedback system (assumed constant in this case), vfb is the feedback voltage signal, and vc is the compensated output voltage signal. The transfer relationship is

Vc(s) = Gc(s)·Ve(s)

where ve = VREF - vfb is the error signal and Gc(s) = Z1(s)/Z2(s) is the compensator's transfer function. We can use fastZ to compute Gc since it is the ratio of two lumped-element impedance networks.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import EngFormatter

# construct models of Z1 and Z2
Z1 = ( R('1', 30e3) + C('1', 20e-9) )['1']
Z2 = ( R('2', 10e3) // C('2', 5e-9) + R('3', 2e3) )['2']

# evalulate frequency response of Gc
ff = np.logspace(1, 6, 1000)
GGc = Z1(ff) / Z2(ff)

# plot the results
fig, (axm, axp) = plt.subplots(2, 1, figsize=(6, 8))
axz = axm.twinx()

bodez(Z1, ff, ax=axz, zlines='Z1:1e3', refzlines='R1 C1:5e3')
bodez(Z2, ff, ax=axz, zlines='Z2:1e3', refzlines='R2:800e3 R3 C2:200')
axm.loglog(ff, np.abs(GGc), color='purple')
axp.semilogx(ff, np.angle(GGc)*180/np.pi, color='purple')
axm.annotate('$|G_c|$', (ff[-1], abs(GGc[-1])), 
             ha='center', va='center', backgroundcolor='w')
axp.annotate('$\\angle G_c$', (ff[-10], np.angle(GGc[-10])*180/np.pi), 
             ha='center', va='center', backgroundcolor='w')

axm.xaxis.set_major_formatter(EngFormatter())
axp.xaxis.set_major_formatter(EngFormatter())
axm.set_ylabel('Compensator Gain (V/V)')
axp.set_ylabel('Compensator Phase Shift (°)')
axp.set_xlabel('Frequency (Hz)')
axm.set_ylim((1, 110))
axz.set_ylim((1e3, 1e6))
plt.show()

png

You can see that there's a phase boost of about 40° at 10kHz. An inverted zero appears at about 300Hz to boost the low-frequency gain.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Wesley Hileman - [email protected]

Owner
Wesley Hileman
Wesley Hileman
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Telegram bot to auto post messages of one channel in another channel as soon as it is posted, without the forwarded tag.

Channel Auto-Post Bot This bot can send all new messages from one channel, directly to another channel (or group, just in case), without the forwarded

Aditya 128 Dec 29, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
A simple implementation of N-gram language model.

About A simple implementation of N-gram language model. Requirements numpy Data preparation Corpus Training data for the N-gram model, a text file lik

4 Nov 24, 2021
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
Yuqing Xie 2 Feb 17, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022