Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

Overview

NeX: Real-time View Synthesis with Neural Basis Expansion

Project Page | Video | Paper | COLAB | Shiny Dataset

Open NeX in Colab

NeX

We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce NeXt-level view-dependent effects---in real time. Unlike traditional MPI that uses a set of simple RGBα planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as the rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000× faster rendering time than the state of the art.

Table of contents



Getting started

conda env create -f environment.yml
./download_demo_data.sh
conda activate nex
python train.py -scene data/crest_demo -model_dir crest -http
tensorboard --logdir runs/

Installation

We provide environment.yml to help you setup a conda environment.

conda env create -f environment.yml

Dataset

Shiny dataset

Download: Shiny dataset.

We provide 2 directories named shiny and shiny_extended.

  • shiny contains benchmark scenes used to report the scores in our paper.
  • shiny_extended contains additional challenging scenes used on our website project page and video

NeRF's real forward-facing dataset

Download: Undistorted front facing dataset

For real forward-facing dataset, NeRF is trained with the raw images, which may contain lens distortion. But we use the undistorted images provided by COLMAP.

However, you can try running other scenes from Local lightfield fusion (Eg. airplant) without any changes in the dataset files. In this case, the images are not automatically undistorted.

Deepview's spaces dataset

Download: Modified spaces dataset

We slightly modified the file structure of Spaces dataset in order to determine the plane placement and split train/test sets.

Using your own images.

Running NeX on your own images. You need to install COLMAP on your machine.

Then, put your images into a directory following this structure

<scene_name>
|-- images
     | -- image_name1.jpg
     | -- image_name2.jpg
     ...

The training code will automatically prepare a scene for you. You may have to tune planes.txt to get better reconstruction (see dataset explaination)

Training

Run with the paper's config

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http

This implementation uses scikit-image to resize images during training by default. The results and scores in the paper are generated using OpenCV's resize function. If you want the same behavior, please add -cv2resize argument.

Note that this code is tested on an Nvidia V100 32GB and 4x RTX 2080Ti GPU.

For a GPU/GPUs with less memory (e.g., a single RTX 2080Ti), you can run using the following command:

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http -layers 12 -sublayers 6 -hidden 256

Note that when your GPU runs ouut of memeory, you can try reducing the number of layers, sublayers, and sampled rays.

Rendering

To generate a WebGL viewer and a video result.

python train.py -scene ${scene} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -predict -http

Video rendering

To generate a video that matches the real forward-facing rendering path, add -nice_llff argument, or -nice_shiny for shiny dataset

Citation

@inproceedings{Wizadwongsa2021NeX,
    author = {Wizadwongsa, Suttisak and Phongthawee, Pakkapon and Yenphraphai, Jiraphon and Suwajanakorn, Supasorn},
    title = {NeX: Real-time View Synthesis with Neural Basis Expansion},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year = {2021},
}

Visit us 🦉

Vision & Learning Laboratory VISTEC - Vidyasirimedhi Institute of Science and Technology

Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

3 Aug 10, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023