This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Overview

OpenVINO Inference API

This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Models in Intermediate Representation(IR) format, converted using the Intel® OpenVINO™ toolkit v2021.1, can be deployed in this API. Currently, OpenVINO supports conversion for Models trained in several Machine Learning frameworks including Caffe, Tensorflow etc. Please refer to the OpenVINO documentation for further details on converting your Model.

load model

Prerequisites

  • OS:
    • Ubuntu 18.04
    • Windows 10 pro/enterprise
  • Docker

Check for prerequisites

To check if you have docker-ce installed:

docker --version

Install prerequisites

Ubuntu

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

In order to build the project run the following command from the project's root directory:

sudo docker build -t openvino_inference_api .

Behind a proxy

sudo docker build --build-arg http_proxy='' --build-arg https_proxy='' -t openvino_inference_api .

Run The Docker Container

If you wish to deploy this API using docker, please issue the following run command.

To run the API, go the to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/models:/models -v $(pwd)/models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

Using Windows based docker:

docker run -itv ${PWD}\models:/models -v ${PWD}\models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

The <docker_host_port> can be any unique port of your choice.

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again.

load model

/detect (POST)

Performs inference on an image using the specified model and returns the bounding-boxes of the objects in a JSON format.

detect image

/models/{model_name}/predict_image (POST)

Performs inference on an image using the specified model, draws bounding boxes on the image, and returns the resulting image as response.

predict image

P.S: If you are using custom endpoints like /detect, /predict_image, you should always use the /load endpoint first and then use /detect

Model structure

The folder "models" contains subfolders of all the models to be loaded. Inside each subfolder there should be a:

  • bin file (<your_converted_model>.bin): contains the model weights

  • xml file (<your_converted_model>.xml): describes the network topology

  • class file (classes.txt): contains the names of the object classes, which should be in the below format

        class1
        class2
        ...
    
  • config.json (This is a json file containing information about the model)

      {
          "inference_engine_name": "openvino_detection",
          "confidence": 60,
          "predictions": 15,
          "number_of_classes": 2,
          "framework": "openvino",
          "type": "detection",
          "network": "fasterrcnn"
      }

    P.S:

    • You can change confidence and predictions values while running the API
    • The API will return bounding boxes with a confidence higher than the "confidence" value. A high "confidence" can show you only accurate predictions

The "models" folder structure should be similar to as shown below:

│──models
  │──model_1
  │  │──<model_1>.bin
  │  │──<model_1>.xml
  │  │──classes.txt
  │  │──config.json
  │
  │──model_2
  │  │──<model_2>.bin
  │  │──<model_2>.xml
  │  │──classes.txt
  │  │──config.json

Acknowledgements

OpenVINO Toolkit

intel.com

robotron.de

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022