MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

Related tags

Deep LearningMOpt-AFL
Overview

MOpt-AFL

1. Description

MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal selection probability distribution of operators with respect to fuzzing effectiveness. More details can be found in the technical report. The installation of MOpt-AFL is the same as AFL's.

2. Cite Information

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song and Raheem Beyah, MOPT: Optimized Mutation Scheduling for Fuzzers, USENIX Security 2019.

3. Seed Sets

We open source all the seed sets used in the paper "MOPT: Optimized Mutation Scheduling for Fuzzers".

4. Experiment Results

The experiment results can be found in https://drive.google.com/drive/folders/184GOzkZGls1H2NuLuUfSp9gfqp1E2-lL?usp=sharing. We only open source the crash files since the space is limited.

5. Technical Report

MOpt_TechReport.pdf is the technical report of the paper "MOPT: Optimized Mutation Scheduling for Fuzzers", which contains more deatails.

6. Parameter Introduction

Most important, you must add the parameter -L (e.g., -L 0) to launch the MOpt scheme.


-L controls the time to move on to the pacemaker fuzzing mode.
-L t: when MOpt-AFL finishes the mutation of one input, if it has not discovered any new unique crash or path for more than t min, MOpt-AFL will enter the pacemaker fuzzing mode.


Setting 0 will enter the pacemaker fuzzing mode at first, which is recommended in a short time-scale evaluation (like 2 hours).
For instance, it may take three or four days for MOpt-AFL to enter the pacemaker fuzzing mode when -L 30.

Hey guys, I realize that most experiments may last no longer than 24 hours. You may have trouble selecting a suitable value of 'L' without testing. So I modify the code in order to employ '-L 1' as the default setting. This means you do not have to add the parameter 'L' to launch the MOpt scheme. If you wish, provide a parameter '-L t' in the cmd can adjust the time when MOpt will enter the pacemaker fuzzing mode as aforementioned. Whether MOpt enters the pacemaker fuzzing mode has a great influence on the fuzzing performance in some cases as shown in our paper.
'-L 1' may not be the best choice but will be acceptable in most cases. I may provide several experiment results to show this situation.

The unique paths found by different fuzzing settings in 24 hours.
Fuzzing setting infotocap @@ -o /dev/null objdump -S @@ sqlite3
MOpt -L 0 3629 5106 10498
MOpt -L 1 3983 5499 9975
MOpt -L 5 3772 2512 9332
MOpt -L 10 4062 4741 9465
MOpt -L 30 3162 1991 6337
AFL 1821 1099 4949

Other important parameters can be found in afl-fuzz.c, for instance,
swarm_num: the number of the PSO swarms used in the fuzzing process.
period_pilot: how many times MOpt-AFL will execute the target program in the pilot fuzzing module, then it will enter the core fuzzing module.
period_core: how many times MOpt-AFL will execute the target program in the core fuzzing module, then it will enter the PSO updating module.
limit_time_bound: control how many interesting test cases need to be found before MOpt-AFL quits the pacemaker fuzzing mode and reuses the deterministic stage. 0 < limit_time_bound < 1, MOpt-AFL-tmp. limit_time_bound >= 1, MOpt-AFL-ever.

Having fun with MOpt-AFL.

Citation:

@inproceedings {236282,
author = {Chenyang Lyu and Shouling Ji and Chao Zhang and Yuwei Li and Wei-Han Lee and Yu Song and Raheem Beyah},
title = {{MOPT}: Optimized Mutation Scheduling for Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1949--1966},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/lyu},
publisher = {{USENIX} Association},
month = aug,
}
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022