MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

Related tags

Deep LearningMOpt-AFL
Overview

MOpt-AFL

1. Description

MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal selection probability distribution of operators with respect to fuzzing effectiveness. More details can be found in the technical report. The installation of MOpt-AFL is the same as AFL's.

2. Cite Information

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song and Raheem Beyah, MOPT: Optimized Mutation Scheduling for Fuzzers, USENIX Security 2019.

3. Seed Sets

We open source all the seed sets used in the paper "MOPT: Optimized Mutation Scheduling for Fuzzers".

4. Experiment Results

The experiment results can be found in https://drive.google.com/drive/folders/184GOzkZGls1H2NuLuUfSp9gfqp1E2-lL?usp=sharing. We only open source the crash files since the space is limited.

5. Technical Report

MOpt_TechReport.pdf is the technical report of the paper "MOPT: Optimized Mutation Scheduling for Fuzzers", which contains more deatails.

6. Parameter Introduction

Most important, you must add the parameter -L (e.g., -L 0) to launch the MOpt scheme.


-L controls the time to move on to the pacemaker fuzzing mode.
-L t: when MOpt-AFL finishes the mutation of one input, if it has not discovered any new unique crash or path for more than t min, MOpt-AFL will enter the pacemaker fuzzing mode.


Setting 0 will enter the pacemaker fuzzing mode at first, which is recommended in a short time-scale evaluation (like 2 hours).
For instance, it may take three or four days for MOpt-AFL to enter the pacemaker fuzzing mode when -L 30.

Hey guys, I realize that most experiments may last no longer than 24 hours. You may have trouble selecting a suitable value of 'L' without testing. So I modify the code in order to employ '-L 1' as the default setting. This means you do not have to add the parameter 'L' to launch the MOpt scheme. If you wish, provide a parameter '-L t' in the cmd can adjust the time when MOpt will enter the pacemaker fuzzing mode as aforementioned. Whether MOpt enters the pacemaker fuzzing mode has a great influence on the fuzzing performance in some cases as shown in our paper.
'-L 1' may not be the best choice but will be acceptable in most cases. I may provide several experiment results to show this situation.

The unique paths found by different fuzzing settings in 24 hours.
Fuzzing setting infotocap @@ -o /dev/null objdump -S @@ sqlite3
MOpt -L 0 3629 5106 10498
MOpt -L 1 3983 5499 9975
MOpt -L 5 3772 2512 9332
MOpt -L 10 4062 4741 9465
MOpt -L 30 3162 1991 6337
AFL 1821 1099 4949

Other important parameters can be found in afl-fuzz.c, for instance,
swarm_num: the number of the PSO swarms used in the fuzzing process.
period_pilot: how many times MOpt-AFL will execute the target program in the pilot fuzzing module, then it will enter the core fuzzing module.
period_core: how many times MOpt-AFL will execute the target program in the core fuzzing module, then it will enter the PSO updating module.
limit_time_bound: control how many interesting test cases need to be found before MOpt-AFL quits the pacemaker fuzzing mode and reuses the deterministic stage. 0 < limit_time_bound < 1, MOpt-AFL-tmp. limit_time_bound >= 1, MOpt-AFL-ever.

Having fun with MOpt-AFL.

Citation:

@inproceedings {236282,
author = {Chenyang Lyu and Shouling Ji and Chao Zhang and Yuwei Li and Wei-Han Lee and Yu Song and Raheem Beyah},
title = {{MOPT}: Optimized Mutation Scheduling for Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1949--1966},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/lyu},
publisher = {{USENIX} Association},
month = aug,
}
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023