Final project for Intro to CS class.

Overview

Financial Analysis Web App

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

1. Project Description

This project is a technical analysis web app made using the Streamlit framework. It allows for a user to perform various analysis methods given a ticker and input parameters. The following indicators are supported: Moving Average, Exponential Moving Average, and Moving Average Convergence Divergence. Additionally, a function to plot Moving Average crossovers of user provided windows is also provided (extra credit?). The app allows for charts with the range of current date and up to 999 days in the past.

2. Project Selection

I chose this project as I enjoy analyzing stock data and wanted to learn more about making a web app with visualizations. Through making this app, I learned the basics of web app development and how to use various frameworks. Additionally, I leveraged Python libraries and APIs to collect stock data. I learned how to develop a data collection and analysis pipeline using a stock data API. Finally, I learned how to apply Classes to a real world application through this project.

3. Future Considerations

If I had an opportunity to redo this project, I would make the visualizations more robust by allowing for user manipulation. Further, in order to improve performance and memory, I would implement a caching feature to prevent unnecessary API calls. These changes would be made in order to improve the quality of the data visualizations and provide a long term solution for this web app given the limitations of the free API. Further, I would use a more robust API as the current one is limited in number of calls and does not adjust historic data for stock split prices.

4. How to Run the Web App

The web app is currently hosted on the Streamlit servers at the following URL:

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

No additional setup or changes should be needed in order for the app to run.

How to Use the Web App

To start, enter a ticker in the text box in the sidebar (if the sidebar is not visible, press the arrow in the top left corner). SPY is set as the default value if no input is provided. Next, select the type of Technical Analysis you would like to do. Depending on the selection, a set of parameters will be provided below. Next, provide the delta value, which is the number of days from the current day to collect data on. The application will pull the daily adjusted closing values of the provided ticker. Next, adjust the sliders for the given Technical Analysis selection. There are default values for some TAs. In order to revert them, select a different dropdown item and select the original again.

Please wait ~1 second after hitting 'Run' for the app the update.

API Limitations: due to the limitations of the (free) API, historic stock price data is NOT retroactively updated for stock splits.

NOTE: please enter logical selections, if a specific chart is not possible, the system will not graph the line. Hit 'Run' to create a new graph after updating the inputs.

If an incorrect ticker is provided, the system will display an error message. In order to clear this, provide valid inputs in the sidebar and hit 'Run' again.

5. Challenges

The main challenge of this project was finding and using an appropriate framework. Having tried Flask and Django before settling on Streamlit, the process of creating a web app can be very tedious. Further, creating and setting up the proper logic was difficult as I had to account for various user inputs and selections, without having the entire page crash. One of the biggest issues I faced was a proper implementation of updating the sidebar fields given the user selection. I overcame these issues by implementing a Streamlit form in order to prevent user inputs from conflicting with each other.

6. Cited Sources

The official documentations of the Streamlit, Alpaca, and numpy APIs were extensively used. The Streamlit documentation greatly helped in the formulation of the web app elements and implementation of the logic. The Alpaca Markets API and documentation was used in order to pull market data. Finally, the third resource was used to assist in the creation of moving average plots from stock data.

https://docs.streamlit.io/

https://alpaca.markets/docs/

https://www.datacamp.com/community/tutorials/moving-averages-in-pandas

Description of Files

webApp.py

Main web app driver file. Contains the page objects and form logic.

tradingMethods.py

Class to perform the technical analysis functions. Takes in ticker, deltas, and related features.

config.py

Holds references to API keys.

requirements.txt

Necessary Python libraries.

Owner
Mayur Khanna
Biomedical Informatics M.S. Candidate at University of Chicago | Python | JavaScript | Bioinformatics
Mayur Khanna
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
LIAO Shuiying 6 Dec 01, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021