RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

Related tags

Deep LearningRTS3D
Overview

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021).

RTS3D is efficiency and accuracy stereo 3D object detection method for autonomous driving.

RTS3D

Introduction

RTS3D is the first true real-time system (FPS>24) for stereo image 3D detection meanwhile achieves 10% improvement in average precision comparing with the previous state-of-the-art method. RTS3D only require RGB images without synthetic data, instance segmentation, CAD model, or depth generator.

Highlights

  • Fast: 33 FPS of single image test speed in KITTI benchmark with 384*1280 resolution
  • Accuracy: SOTA on the KITTI benchmark.
  • Anchor Free: No 2D or 3D anchor are reauired
  • Easy to deploy: RTS3D uses conventional convolution operations and MLP, so it is very easy to deploy and accelerate.

RTS3D Baseline and Model Zoo

All experiments are tested with Ubuntu 16.04, Pytorch 1.0.0, CUDA 9.0, Python 3.6, single NVIDIA 2080Ti

IoU Setting 1: Car IoU > 0.5, Pedestrian IoU > 0.25, Cyclist IoU > 0.25

IoU Setting 2: Car IoU > 0.7, Pedestrian IoU > 0.5, Cyclist IoU > 0.5

  • Training on KITTI train split and evaluation on val split.
Class Iteration FPS AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- - - Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car- Recall-11 1 90.9 89.83, 77.05, 68.28 89.27, 70.12, 61.17 73.20, 53.62, 46.44 60.87, 42.38, 36.44
Car- Recall-40 1 90.9 92.92, 76.17, 66.62 90.35, 71.37, 63.52 78.12, 54.75, 47.09 60.34, 39.32, 32.97
Car- Recall-11 2 45.5 90.41, 78.70, 70.03 90.26, 77.23, 68.28 76.56, 56.46, 48.20 63.65, 44.50, 37.48
Car- Recall-40 2 45.5 95.75, 79.61, 69.69 93.57, 76.64, 66.72 78.12, 54.75, 47.09 63.99, 41.78, 34.96
  • Training on KITTI train split and evaluation on val split.
    • FCE Space Resolution: 10 * 10 * 10
    • Recall split: 11
    • Iteration: 2
    • Model: (Google Drive), (Baidu Cloud 提取码:4t4u)
Class AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car 90.18, 78.46, 69.76 89.88, 76.64, 67.86 74.95, 54.07, 46.78 58.50, 39.74, 34.83
Pedestrian 57.12, 48.82, 40.88 56.36, 48.29, 40.22 32.16, 26.31, 21.28 26.95, 20.77, 19.74
Cyclist 54.48, 35.78, 30.80 53.86, 30.90, 30.52 33.59, 20.80, 20.14 31.05, 20.26, 18.93

Installation

Please refer to INSTALL.md

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

KM3DNet
├── kitti_format
│   ├── data
│   │   ├── kitti
│   │   |   ├── annotations
│   │   │   ├── calib /000000.txt .....
│   │   │   ├── image(left[0-7480] right[7481-14961] input augmentatiom)
│   │   │   ├── label /000000.txt .....
|   |   |   ├── train.txt val.txt trainval.txt
│   │   │   ├── mono_results /000000.txt .....
├── src
├── demo_kitti_format
├── readme
├── requirements.txt

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Acknowledgement

License

RTS3D is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from, CenterNet, iou3d and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{2012.15072,
Author = {Peixuan Li, Shun Su, Huaici Zhao},
Title = {RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving},
Year = {2020},
Eprint = {arXiv:2012.15072},
}
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022