RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

Related tags

Deep LearningRTS3D
Overview

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021).

RTS3D is efficiency and accuracy stereo 3D object detection method for autonomous driving.

RTS3D

Introduction

RTS3D is the first true real-time system (FPS>24) for stereo image 3D detection meanwhile achieves 10% improvement in average precision comparing with the previous state-of-the-art method. RTS3D only require RGB images without synthetic data, instance segmentation, CAD model, or depth generator.

Highlights

  • Fast: 33 FPS of single image test speed in KITTI benchmark with 384*1280 resolution
  • Accuracy: SOTA on the KITTI benchmark.
  • Anchor Free: No 2D or 3D anchor are reauired
  • Easy to deploy: RTS3D uses conventional convolution operations and MLP, so it is very easy to deploy and accelerate.

RTS3D Baseline and Model Zoo

All experiments are tested with Ubuntu 16.04, Pytorch 1.0.0, CUDA 9.0, Python 3.6, single NVIDIA 2080Ti

IoU Setting 1: Car IoU > 0.5, Pedestrian IoU > 0.25, Cyclist IoU > 0.25

IoU Setting 2: Car IoU > 0.7, Pedestrian IoU > 0.5, Cyclist IoU > 0.5

  • Training on KITTI train split and evaluation on val split.
Class Iteration FPS AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- - - Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car- Recall-11 1 90.9 89.83, 77.05, 68.28 89.27, 70.12, 61.17 73.20, 53.62, 46.44 60.87, 42.38, 36.44
Car- Recall-40 1 90.9 92.92, 76.17, 66.62 90.35, 71.37, 63.52 78.12, 54.75, 47.09 60.34, 39.32, 32.97
Car- Recall-11 2 45.5 90.41, 78.70, 70.03 90.26, 77.23, 68.28 76.56, 56.46, 48.20 63.65, 44.50, 37.48
Car- Recall-40 2 45.5 95.75, 79.61, 69.69 93.57, 76.64, 66.72 78.12, 54.75, 47.09 63.99, 41.78, 34.96
  • Training on KITTI train split and evaluation on val split.
    • FCE Space Resolution: 10 * 10 * 10
    • Recall split: 11
    • Iteration: 2
    • Model: (Google Drive), (Baidu Cloud 提取码:4t4u)
Class AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car 90.18, 78.46, 69.76 89.88, 76.64, 67.86 74.95, 54.07, 46.78 58.50, 39.74, 34.83
Pedestrian 57.12, 48.82, 40.88 56.36, 48.29, 40.22 32.16, 26.31, 21.28 26.95, 20.77, 19.74
Cyclist 54.48, 35.78, 30.80 53.86, 30.90, 30.52 33.59, 20.80, 20.14 31.05, 20.26, 18.93

Installation

Please refer to INSTALL.md

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

KM3DNet
├── kitti_format
│   ├── data
│   │   ├── kitti
│   │   |   ├── annotations
│   │   │   ├── calib /000000.txt .....
│   │   │   ├── image(left[0-7480] right[7481-14961] input augmentatiom)
│   │   │   ├── label /000000.txt .....
|   |   |   ├── train.txt val.txt trainval.txt
│   │   │   ├── mono_results /000000.txt .....
├── src
├── demo_kitti_format
├── readme
├── requirements.txt

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Acknowledgement

License

RTS3D is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from, CenterNet, iou3d and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{2012.15072,
Author = {Peixuan Li, Shun Su, Huaici Zhao},
Title = {RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving},
Year = {2020},
Eprint = {arXiv:2012.15072},
}
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022