AugLiChem - The augmentation library for chemical systems.

Overview

AugLiChem

Build Status codecov

Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular systems, as well as provides automatic downloading for our benchmark datasets, and easy to use model implementations. In depth documentation about how to use AugLiChem, make use of transformations, and train models is given on our website.

Installation

AugLiChem is a python3.8+ package.

Linux

It is recommended to use an environment manager such as conda to install AugLiChem. Instructions can be found here. If using conda, creating a new environment is ideal and can be done simply by running the following command:

conda create -n auglichem python=3.8

Then activating the new environment with

conda activate auglichem

AugLiChem is built primarily with pytorch and that should be installed independently according to your system specifications. After activating your conda environment, pytorch can be installed easily and instructions are found here.

torch_geometric needs to be installed with conda install pyg -c pyg -c conda-forge.

Once you have pytorch and torch_geometric installed, installing AugLiChem can be done using PyPI:

pip install auglichem

MacOS ARM64 Architecture

A more involved install is required to run on the new M1 chips since some of the packages do not have official support yet. We are working on a more elegant solution given the current limitations.

First, download this repo.

If you do not have it yet,, conda for ARM64 architecture needs to be installed. This can be done with Miniforge (which contains conda installer) which is installed by following the guide here

Once you have miniforge compatible with ARM64 architecture, a new environment with rdkit can be i nstalled. If you do not specify python=3.8 it will default to python=3.9.6 as of the time of writing th is.

conda create -n auglichem python=3.8 rdkit

Now activate the environment:

conda activate auglichem

From here, individual packages can be installed:

conda install -c pytorch pytorch

conda install -c fastchan torchvision

conda install scipy

conda install cython

conda install scikit-learn

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-geometric

Before installing the package, you must go into setup.py in the main directory and comment out rdkit-pypi and tensorboard from the install_requires list since they are already installed. Not commenting these packages out will result in an error during installation.

Finally, run:

pip install .

Usage guides are provided in the examples/ directory and provide useful guides for using both the molecular and crystal sides of the package. Make sure to install jupyter before working with examples, using conda install jupyter. After installing the package as described above, the example notebooks can be downloaded separately and run locally.

Authors

Rishikesh Magar*, Yuyang Wang*, Cooper Lorsung*, Hariharan Ramasubramanian, Chen Liang, Peiyuan Li, Amir Barati Farimani

*Equal contribution

Paper

Our paper can be found here

Citation

If you use AugLiChem in your work, please cite:

@misc{magar2021auglichem,
      title={AugLiChem: Data Augmentation Library ofChemical Structures for Machine Learning}, 
      author={Rishikesh Magar and Yuyang Wang and Cooper Lorsung and Chen Liang and Hariharan Ramasubramanian and Peiyuan Li and Amir Barati Farimani},
      year={2021},
      eprint={2111.15112},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

License

AugLiChem is MIT licensed, as found in the LICENSE file. Please note that some of the dependencies AugLiChem uses may be licensed under different terms.

Owner
BaratiLab
BaratiLab
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022