Meta Learning for Semi-Supervised Few-Shot Classification

Overview

few-shot-ssl-public

Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv]

Dependencies

  • cv2
  • numpy
  • pandas
  • python 2.7 / 3.5+
  • tensorflow 1.3+
  • tqdm

Our code is tested on Ubuntu 14.04 and 16.04.

Setup

First, designate a folder to be your data root:

export DATA_ROOT={DATA_ROOT}

Then, set up the datasets following the instructions in the subsections.

Omniglot

[Google Drive] (9.3 MB)

# Download and place "omniglot.tar.gz" in "$DATA_ROOT/omniglot".
mkdir -p $DATA_ROOT/omniglot
cd $DATA_ROOT/omniglot
mv ~/Downloads/omniglot.tar.gz .
tar -xzvf omniglot.tar.gz
rm -f omniglot.tar.gz

miniImageNet

[Google Drive] (1.1 GB)

Update: Python 2 and 3 compatible version: [train] [val] [test]

# Download and place "mini-imagenet.tar.gz" in "$DATA_ROOT/mini-imagenet".
mkdir -p $DATA_ROOT/mini-imagenet
cd $DATA_ROOT/mini-imagenet
mv ~/Downloads/mini-imagenet.tar.gz .
tar -xzvf mini-imagenet.tar.gz
rm -f mini-imagenet.tar.gz

tieredImageNet

[Google Drive] (12.9 GB)

# Download and place "tiered-imagenet.tar" in "$DATA_ROOT/tiered-imagenet".
mkdir -p $DATA_ROOT/tiered-imagenet
cd $DATA_ROOT/tiered-imagenet
mv ~/Downloads/tiered-imagenet.tar .
tar -xvf tiered-imagenet.tar
rm -f tiered-imagenet.tar

Note: Please make sure that the following hardware requirements are met before running tieredImageNet experiments.

  • Disk: 30 GB
  • RAM: 32 GB

Core Experiments

Please run the following scripts to reproduce the core experiments.

# Clone the repository.
git clone https://github.com/renmengye/few-shot-ssl-public.git
cd few-shot-ssl-public

# To train a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  [--disable_distractor]

# To test a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  --eval --pretrain {MODEL_ID}       \
                  [--num_unlabel {NUM_UNLABEL}]      \
                  [--num_test {NUM_TEST}]            \
                  [--disable_distractor]             \
                  [--use_test]
  • Possible {MODEL} options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible {DATASET} options are omniglot, mini-imagenet, tiered-imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Replace {MODEL_ID} with the model ID obtained from the training program.
  • Replace {SAVE_CKPT_FOLDER} with the folder where you save your checkpoints.
  • Add additional flags --num_unlabel 20 --num_test 20 for testing mini-imagenet and tiered-imagenet models, so that each episode contains 20 unlabeled images per class and 20 query images per class.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.
  • More commandline details see run_exp.py.

Simple Baselines for Few-Shot Classification

Please run the following script to reproduce a suite of baseline results.

python run_baseline_exp.py --data_root $DATA_ROOT    \
                           --dataset {DATASET}
  • Possible DATASET options are omniglot, mini-imagenet, tiered-imagenet.

Run over Multiple Random Splits

Please run the following script to reproduce results over 10 random label/unlabel splits, and test the model with different number of unlabeled items per episode. The default seeds are 0, 1001, ..., 9009.

python run_multi_exp.py --data_root $DATA_ROOT       \
                        --dataset {DATASET}          \
                        --label_ratio {LABEL_RATIO}  \
                        --model {MODEL}              \
                        [--disable_distractor]       \
                        [--use_test]
  • Possible MODEL options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible DATASET options are omniglot, mini_imagenet, tiered_imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.

Citation

If you use our code, please consider cite the following:

  • Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle and Richard S. Zemel. Meta-Learning for Semi-Supervised Few-Shot Classification. In Proceedings of 6th International Conference on Learning Representations (ICLR), 2018.
@inproceedings{ren18fewshotssl,
  author   = {Mengye Ren and 
              Eleni Triantafillou and 
              Sachin Ravi and 
              Jake Snell and 
              Kevin Swersky and 
              Joshua B. Tenenbaum and 
              Hugo Larochelle and 
              Richard S. Zemel},
  title    = {Meta-Learning for Semi-Supervised Few-Shot Classification},
  booktitle= {Proceedings of 6th International Conference on Learning Representations {ICLR}},
  year     = {2018},
}
Owner
Mengye Ren
Mengye Ren
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022