Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

Overview

PPML: Machine Learning on Data you cannot see

Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022

Abstract

Privacy guarantees are one of the most crucial requirements when it comes to analyse sensitive information. However, data anonymisation techniques alone do not always provide complete privacy protection; moreover Machine Learning (ML) models could also be exploited to leak sensitive data when attacked and no counter-measure is put in place.

Privacy-preserving machine learning (PPML) methods hold the promise to overcome all those issues, allowing to train machine learning models with full privacy guarantees.

This workshop will be mainly organised in two parts. In the first part, we will explore one example of ML model exploitation (i.e. inference attack ) to reconstruct original data from a trained model, and we will then see how differential privacy can help us protecting the privacy of our model, with minimum disruption to the original pipeline. In the second part of the workshop, we will examine a more complicated ML scenario to train Deep learning networks on encrypted data, with specialised distributed federated learning strategies.

Outline

  • Introduction: Brief Intro to PPML and to the workshop (slides)

  • Part 1: Strengthening Deep Neural Networks

    • Model vulnerabilities:
    • Deep Learning with Differential Privacy
  • Part 2: Primer on Privacy-Preserving Machine Learning

Note: the material has been updated after the conference, to match the flow of the presentation as delivered during the conference, as well as to incorporate feedbacks received afterwards.

"PyConDE Logo" Video recording of the session presented at PyCon DE

Get the material

Clone the current repository, in order to get the course materials. To do so, once connected to your remote machine (via SSH), execute the following instructions:

cd $HOME  # This will make sure you'll be in your HOME folder
git clone https://github.com/leriomaggio/ppml-pyconde.git

Note: This will create a new folder named ppml-pyconde. Move into this folder by typing:

cd ppml-pyconde

Well done! Now you should do be in the right location. Bear with me another few seconds, following instructions reported below 🙏

Set up your Environment

To execute the notebooks in this repository, it is necessary to set up the environment.

Please refer to the Get-Ready.ipynb notebook for a step-by-step guide on how to setup the environment, and check that all is working, and ready to go.

Note: You could run this notebook directly in VSCode, or in your existing Jupyter notebook/lab environment:

jupyter notebook Get-Ready.ipynb

Colophon

Author: Valerio Maggio (@leriomaggio), Senior Research Associate, University of Bristol.

All the Code material is distributed under the terms of the Apache License. See LICENSE file for additional details.

All the instructional materials in this repository are free to use, and made available under the [Creative Commons Attribution license][https://creativecommons.org/licenses/by/4.0/]. The following is a human-readable summary of (and not a substitute for) the full legal text of the CC BY 4.0 license.

You are free:

  • to Share---copy and redistribute the material in any medium or format
  • to Adapt---remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

  • Attribution---You must give appropriate credit (mentioning that your work is derived from work that is Copyright © Software Carpentry and, where practical, linking to http://software-carpentry.org/), provide a [link to the license][cc-by-human], and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions---You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Acknowledgment and funding

The material developed in this tutorial has been supported by the University of Bristol, and by the Software Sustainability Institute (SSI), as part of my SSI fellowship on PETs (Privacy Enchancing Technologies).

Please see this deck to know more about my fellowship plans.

I would also like to thank all the people at OpenMined for all the encouragement and support with the preparation of this tutorial. I hope the material in this repository could contribute to raise awareness about all the amazing work on PETs it's being provided to the Open Source and the Python communities.

SSI Logo UoB Logo OpenMined

Contacts

For any questions or doubts, feel free to open an issue in the repository, or drop me an email @ valerio.maggio_at_gmail_dot_com

You might also like...
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

Releases(pyconde)
  • pyconde(Jun 14, 2022)

    Tutorial on Privacy-Preserving Machine Learning as presented at PyCon DE 2022 (https://2022.pycon.de/program/QHJ7SX/)

    Full Changelog: https://github.com/leriomaggio/ppml-tutorial/commits/pyconde

    Source code(tar.gz)
    Source code(zip)
Owner
Valerio Maggio
Data Scientist and Researcher @DynamicGenetics
Valerio Maggio
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022