[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Overview

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

This repo contains the PyTorch code and implementation for the paper Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Bin Liang#, Wangda Luo#, Xiang Li, Lin Gui, Min Yang, Xiaoqi Yu, and Ruifeng Xu*. Proceedings of CIKM 2020

Please cite our paper and kindly give a star for this repository if you use this code.

For any question, plaese email [email protected] or [email protected].

Model Overview

model

Requirement

  • pytorch >= 0.4.0
  • numpy >= 1.13.3
  • sklearn
  • python 3.6 / 3.7
  • CUDA 9.0
  • transformers

To install requirements, run pip install -r requirements.txt.

Dataset

you can directly use the processed dataset located in datasets/:
Note that you need to extract the data from the datasets folder: unzip datasets.zip

├── data
│   │   ├── semeval14(res14,laptop14)
│   │   ├── semeval15(res15)
│   │   ├── semeval16(res16)
│   │   ├── MAMS

The dataSet contains with cl_2X3 is the dataSet obtained after label argment, and each data is as follows:
Context
Aspect
Aspect-sentiment-label(-1:negative;0:netrual;1:positive)
Contrastive-label(aspect-dependent/aspect-invariant)
Contrastive-aspect-label(0:negative;1:netrual;2:positive)

Preparation

a) Download the pytorch version pre-trained bert-base-uncased model and vocabulary from the link provided by huggingface. Then change the value of parameter --bert_model_dir to the directory of the bert model. you can get the pre-trained bert-base-uncased model in https://github.com/huggingface/transformers.

b) Label enhancement method. For new data, additional supervised signals need to be obtained through label enhancement;
    i) Through BERT overfitting the training set, the acc can reach more than 97%;
    ii) Replace aspect with other or mask, and get the emotional label of the aspect after replacing the aspect;
    iii) Determine whether the output label is consistent with the real label, and fill in the aspect-dependent/aspect-invariant label for the data.

c) The data defaults are in data_utils.py, which you can view if you want to change the data entered into the model.

Training

  1. Adjust the parameters and set the experiment.
    --model:Selection model.(bert_spc_cl)
    --dataset:Select dataSet.(acl14,res14,laptop14,res15,res16,mams and so on)
    --num_epoch:Iterations of the model.
    --is_test 0:Verify module.(1 is data verification, 0 is model training)
    --type: Select a task type.(normal,cl2,cl6,cl2X3)
  2. Run the shell script to start the program.
bash run.sh

For run.sh code:


CUDA_VISIBLE_DEVICES=3 \
  python train_cl.py \
  --model_name bert_spc_cl \
  --dataset cl_mams_2X3 \
  --num_epoch 50 \
  --is_test 0 \
  --type cl2X3

For dataset,you can choose these dataset : "cl_acl2014_2X3" "cl_res2014_2X3" "cl_laptop2014_2X3" "cl_res2015_2X3" "cl_res2016_2X3" "cl_mams_2X3".

Testing

bash run_test.sh

Citation

@inproceedings{10.1145/3459637.3482096,
author = {Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
title = {Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3482096},
doi = {10.1145/3459637.3482096},
abstract = {Most existing aspect-based sentiment analysis (ABSA) research efforts are devoted to extracting the aspect-dependent sentiment features from the sentence towards the given aspect. However, it is observed that about 60% of the testing aspects in commonly used public datasets are unknown to the training set. That is, some sentiment features carry the same polarity regardless of the aspects they are associated with (aspect-invariant sentiment), which props up the high accuracy of existing ABSA models when inevitably inferring sentiment polarities for those unknown testing aspects. Therefore, in this paper, we revisit ABSA from a novel perspective by deploying a novel supervised contrastive learning framework to leverage the correlation and difference among different sentiment polarities and between different sentiment patterns (aspect-invariant/-dependent). This allows improving the sentiment prediction for (unknown) testing aspects in the light of distinguishing the roles of valuable sentiment features. Experimental results on 5 benchmark datasets show that our proposed approach substantially outperforms state-of-the-art baselines in ABSA. We further extend existing neural network-based ABSA models with our proposed framework and achieve improved performance.},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
pages = {3242–3247},
numpages = {6},
keywords = {sentiment analysis, contrastive learning, aspect sentiment analysis},
location = {Virtual Event, Queensland, Australia},
series = {CIKM '21}
}

or

@inproceedings{liang2021enhancing,
  title={Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
  author={Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={3242--3247},
  year={2021}
}

Credits

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022