This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Overview

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition

This is the research repository for Vid2Doppler (CHI 2021) containing the code for:

  • Generating synthetic Doppler data from videos
  • Evaluating the activity recognition classifier trained on synthetically generated Doppler data only, on the real world Doppler dataset presented in the paper

More details for the project can be found here.

Environment Setup

We first recommend setting up conda or virtualenv to run an independent setup.

After cloning the git repository, in the Vid2Doppler folder:

  1. Create a conda environment:
conda create -n vid2dop python=3.7
conda activate vid2dop
pip install -r requirements.txt
  1. Install the psbody library for the mesh visualization. In particular:
git clone https://github.com/MPI-IS/mesh.git

In the mesh folder, run:

BOOST_INCLUDE_DIRS=/path/to/boost/include make all

Now go to the Python folder in Vid2Doppler and replace the meshviewer.py installed by pybody with the custom one:

cp meshviewer.py $CONDA_PREFIX/lib/python3.7/site-packages/psbody/mesh/meshviewer.py

In case of using some other virtual environment manager, replace the meshviewer.py file installed by psbody with the one provided.

  1. Run the following command in the Python folder to get the pretrained VIBE pose model in the:
source ../Environment/prepare_data.sh

Dataset and Models

Use the links below to download the:

You can download and unzip the above in the Vid2Doppler folder.

Usage

Run the following in the Python folder.

Synthetic Doppler Data Generation from Videos

doppler_from_vid.py generates synthetic Doppler data from videos. Run it on the sample_videos provided.

python doppler_from_vid.py --input_video YOUR_INPUT_VIDEO_FILE --model_path PATH_TO_DL_MODELS_FOLDER  

Other options:
	--visualize_mesh : output visualized radial velocity mesh (saved automatically in the output folder)
	--doppler_gt : Use if the ground truth real world Doppler data is available for comparison

The script outputs the synthetic data signal (saved with the suffix _output_signal) in the same folder as the input_video. Reference plot showcased below.

Human Activity Classification on Real World Doppler

doppler_eval.py has the code for evaluating the activity recogntion classifier trained on synthetically generated Doppler data and tested on the real world Doppler dataset.

python doppler_eval.py --data_path PATH_TO_DATASET_FOLDER --model_path PATH_TO_DL_MODELS_FOLDER  

Reference

Karan Ahuja, Yue Jiang, Mayank Goel, and Chris Harrison. 2021. Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 292, 1–10. DOI:https://doi.org/10.1145/3411764.3445138

Download paper here.

BibTex Reference:

@inproceedings{10.1145/3411764.3445138,
author = {Ahuja, Karan and Jiang, Yue and Goel, Mayank and Harrison, Chris},
title = {Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition},
year = {2021},
isbn = {9781450380966},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3411764.3445138},
doi = {10.1145/3411764.3445138},
articleno = {292},
numpages = {10},
keywords = {HAR, Datasets, Cross domain translation, Privacy-preserving sensing, Doppler sensing, Human activity recognition},
location = {Yokohama, Japan},
series = {CHI '21}
}

Vid2Doppler makes use of VIBE and Psbody. Please cite them and be respectful of their licenses as well.

Owner
Future Interfaces Group (CMU)
The Future Interfaces Group is an interdisciplinary research lab within the Human-Computer Interaction Institute at Carnegie Mellon University.
Future Interfaces Group (CMU)
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023