Exploring whether attention is necessary for vision transformers

Overview

Do You Even Need Attention?
A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Paper/Report

TL;DR

We replace the attention layer in a vision transformer with a feed-forward layer and find that it still works quite well on ImageNet.

Abstract

The strong performance of vision transformers on image classification and other vision tasks is often attributed to the design of their multi-head attention layers. However, the extent to which attention is responsible for this strong performance remains unclear. In this short report, we ask: is the attention layer even necessary? Specifically, we replace the attention layer in a vision transformer with a feed-forward layer applied over the patch dimension. The resulting architecture is simply a series of feed-forward layers applied over the patch and feature dimensions in an alternating fashion. In experiments on ImageNet, this architecture performs surprisingly well: a ViT/DeiT-base-sized model obtains 74.9% top-1 accuracy, compared to 77.9% and 79.9% for ViT and DeiT respectively. These results indicate that aspects of vision transformers other than attention, such as the patch embedding, may be more responsible for their strong performance than previously thought. We hope these results prompt the community to spend more time trying to understand why our current models are as effective as they are.

Note

This is concurrent research with MLP-Mixer from Google Research. The ideas are exacty the same, with the one difference being that they use (a lot) more compute.

Pretrained models and logs

Here is a Weights and Biases report with the expected training trajectory: W&B

name [email protected] #params url
FF-tiny 61.4 7.7M model
FF-base 74.9 62M model
FF-large 71.4 206M -

Note: I haven't uploaded the FF-Large model because (1) it's over GitHub's file storage limit, and (2) I don't see why anyone would want it, given that it performs worse than the base model. That being said, if you want it, reach out to me and I'll send it to you.

How to train

The model definition in vision_transformer_linear.py is designed to be run with the repo from DeiT, which is itself based on the wonderful timm package.

Steps:

  • Clone the DeiT repo and move the file into it
git clone https://github.com/facebookresearch/deit
mv vision_transformer_linear.py deit
cd deit
  • Add a line to import vision_transformer_linear in main.py. For example, add the following after the import statements (around line 27):
+ import vision_transformer_linear
  • Train:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port 10490 \
--use_env main.py \
--model linear_tiny \
--batch-size 128 \
--drop 0.1 \
--output_dir outputs/linear-tiny \
--data-path your/path/to/imagenet

Citation

If you build upon this idea, feel free to drop a citation (and also cite MLP-Mixer).

@article{melaskyriazi2021doyoueven,
  title={Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet},
  author={Luke Melas-Kyriazi},
  journal=arxiv,
  year=2021
}
You might also like...
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used to detect whether each face detected by the cv2 face detection dnn is wearing a mask

A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Multivariate Time Series Forecasting with efficient Transformers. Code for the paper
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Comments
  • On details about the experiments

    On details about the experiments

    In the experiment section of the report, you mention:

    Such a comparison is not exactly fair because the feed-forward model uses stronger training augmentations.

    I wonder what the augmentations are, for details about the augmentation seems missing from the paper.

    opened by boredtylin 2
  • Positional Encoding Ablation

    Positional Encoding Ablation

    Hi Luke, thank you for sharing this amazing work.

    In your arxiv document, I cannot find any mention of positional encoding, but I see that you use them in your code. Did you conduct any ablation study on the PE? i.e., how much does it affect the performance, with and without?

    Thank you in advance.

    opened by jjparkcv 0
  • Interaction between patches through a transpose may have a stronger role to play ?

    Interaction between patches through a transpose may have a stronger role to play ?

    Hi, I was going through your exp report. You have made a point that since you are able to get a good performance without using attention layer so good performance of ViT may be more to do with it's embedding layer than attention .

    But I believe, It's also may be to do with how you have established an interaction between patches through a transpose very similar to what was done in MLP-Mixer .

    Would love to know your thoughts on this ?

    opened by rakshith291 0
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022