Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

Overview

Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

Download PDFAboutCreditsAuthorLicense


Download

Like my book? write a review on Amazon: https://www.amazon.com/Deep-Learning-Interviews-interview-questions/dp/1916243568/ref=tmm_pap_swatch_0?_encoding=UTF8&qid=&sr=

SELLING OR COMMERCIAL USE IS STRICTLY PROHIBITED. The user rights of this e-resource are specified in a licence agreement below. You may only use this e-resource for the purposes private study. Any selling/reselling of its content is strictly prohibited.

The PDF is available here:

https://drive.google.com/file/d/1EAgan7aewt7BjyaEoxnhDHMSuQP58Ii0/view?usp=sharing

This book (www.interviews.ai) was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the interview process is the most significant hurdle between you and a dream job. Even though you have the ability, the background, and the motivation to excel in your target position, you might need some guidance on how to get your foot in the door.

About

In AI, an elite group of researches such as the ones at Google DeepMind, are breaking scientific frontiers time and again. In quantitative algorithms, for instance, a handful of researchers who are at the top of the field can crack challenges that seem otherwise out of reach, developing models that drive future trading.

Those experts rely on years of experience and thorough understanding, and they’re fueled by their love of complex problems. Hedge funds do everything they can to attract top number crunchers longing to crack intractable challenges. If you are an aspiring data scientist, with a quantitative background and the gauntlet of the interviewing process dead ahead, you probably know that process is the most significant hurdle between you and a dream job somewhere in a startup or a branch of the big five. You have the ability, but you could use some guidance and preparation

What can it do for me?

The book’s contents is a large inventory of numerous topics relevant to DL job interviews and graduate-level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs:

  •  Hundreds of fully-solved problems
    
  • Problems from numerous areas of deep learning
    
  •  Clear diagrams and illustrations
    
  •  A comprehensive index
    
  •  Step-by-step solutions to problems
    
  •  Not just the answers given, but the work shown
    
  •  Not just the work shown, but reasoning given where appropriate
    

Core subject areas

Your curiosity will pull you through the book’s problem sets, formulas, and instructions, and as you progress, you’ll deepen your understanding of deep learning. The connections between calculus, logistic regression, entropy, and deep learning theory are intricate: work through the book, and those connections will feel intuitive. VOLUME-I of the book focuses on statistical perspectives and blends background fundamentals with core ideas and practical knowledge. There are dedicated chapters on:

  •  Information Theory
    
  •  Calculus & Algorithmic Differentiation
    
  •  Bayesian Deep Learning & Probabilistic Programming
    
  •  Logistic Regression
    
  •  Ensemble Learning
    
  •  Feature Extraction
    
  •  Deep Learning: Expanded Chapter (100+ pages)
    

These chapters appear alongside numerous in-depth treatments of topics in Deep Learning with code examples in PyTorch, Python and C++.

Citation

@Book{Kashani2019, title = {Deep learning Interviews}, 
   author = {Shlomo Kashani}, 
   publisher = {Shlomo Kashani}, 
   year = {2020}, 
   edition = {1st}, 
   note = {ISBN 13: 978-1-9162435-4-5 }, 
   url = {https://www.interviews.ai}, 
}

Disclaimers

  • "PyTorch" is a trademark of Facebook.

Licensing

ALL RIGHTS RESERVED.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher. Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly. This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher. Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, and reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book. By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to errors, omissions, or inaccuracies.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Limit of Liability/Disclaimer of Warranty. While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Notices. Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022