Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Related tags

Deep LearningUVC
Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Project | Paper

Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Xueting Li*, Sifei Liu*, Shalini De Mello, Xiaolong Wang, Jan Kautz, Ming-Hsuan Yang.

(* equal contributions)

In Neural Information Processing Systems (NeurIPS), 2019.

Citation

If you use our code in your research, please use the following BibTex:

@inproceedings{uvc_2019,
    Author = {Xueting Li and Sifei Liu and Shalini De Mello and Xiaolong Wang and Jan Kautz and Ming-Hsuan Yang},
    Title = {Joint-task Self-supervised Learning for Temporal Correspondence},
    Booktitle = {NeurIPS},
    Year = {2019},
}

Instance segmentation propagation on DAVIS2017

Method J_mean J_recall J_decay F_mean F_recall F_decay
Ours 0.563 0.650 0.289 0.592 0.641 0.354
Ours - track 0.577 0.683 0.263 0.613 0.698 0.324

Prerequisites

The code is tested in the following environment:

  • Ubuntu 16.04
  • Pytorch 1.1.0, tqdm, scipy 1.2.1

Testing on DAVIS2017

Testing without tracking

To test on DAVIS2017 for instance segmentation mask propagation, please run:

python test.py -d /workspace/DAVIS/ -s 480

Important parameters:

  • -c: checkpoint path.
  • -o: results path.
  • -d: DAVIS 2017 dataset path.
  • -s: test resolution, all results in the paper are tested on 480p images, i.e. -s 480.

Please check the test.py file for other parameters.

Testing with tracking

To test on DAVIS2017 by tracking & propagation, please run:

python test_with_track.py -d /workspace/DAVIS/ -s 480

Similar parameters as test.py, please see the test_with_track.py for details.

Testing on the VIP dataset

To test on VIP, please run the following command with your own VIP path:

python test_mask_vip.py -o results/VIP/category/ --scale_size 560 560 --pre_num 1 -d /DATA/VIP/VIP_Fine/Images/ --val_txt /DATA/VIP/VIP_Fine/lists/val_videos.txt -c weights/checkpoint_latest.pth.tar

and then:

python eval_vip.py -g DATA/VIP/VIP_Fine/Annotations/Category_ids/ -p results/VIP/category/

Testing on the JHMDB dataset

Please check out this branch. The code is borrowed from TimeCycle.

Training on Kinetics

Dataset

We use the kinetics dataset for training.

Training command

python track_match_v1.py --wepoch 10 --nepoch 30 -c match_track_switch --batchsize 40 --coord_switch 0 --lc 0.3

Acknowledgements

Owner
Sifei Liu
Sifei Liu
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022