Chinese named entity recognization with BiLSTM using Keras

Overview

Chinese named entity recognization (Bilstm with Keras)

Project Structure

./
├── README.md
├── data
│   ├── README.md
│   ├── data							数据集
│   │   ├── test.txt
│   │   └── train.txt
│   ├── plain_text.txt
│   └── vocab.txt                       词表
├── evaluate
│   ├── __init__.py
│   └── f1_score.py                     计算实体F1得分
├── keras_contrib                       keras_contrib包,也可以pip装
├── log                                 训练nohup日志
│   ├── __init__.py
│   └── nohup.out
├── model                               模型
│   ├── BiLSTMCRF.py
│   ├── __init__.py
│   └── __pycache__
├── predict                             输出预测
│   ├── __init__.py
│   ├── __pycache__
│   ├── predict.py
│   └── predict_process.py
├── preprocess                          数据预处理
│   ├── README.md
│   ├── __pycache__
│   ├── convert_jsonl.py
│   ├── data_add_line.py
│   ├── generate_vocab.py               生成词表
│   ├── process_data.py                 数据处理转换
│   ├── splite.py
│   └── vocab.py                        词表对应工具
├── public
│   ├── __init__.py
│   ├── __pycache__
│   ├── config.py                       训练设置
│   ├── generate_label_id.py            生成label2id文件
│   ├── label2id.json                   标签dict
│   ├── path.py                         所有路径
│   └── utils.py                        小工具
├── report
│   └── report.out                      F1评估报告
├── train.py
└── weight                              保存的权重
    └── bilstm_ner.h5

52 directories, 214 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用tab("\t")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 修改public/path.py中的地址
  3. 使用public/generate_label_id.py生成label2id.txt文件,将其中的内容填到preprocess/vocab.py的get_tag2index中。注意:序号必须从0开始
  4. 修改public/config.py中的MAX_LEN(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_LEN)
  5. 运行preprocess/generate_vocab.py生成词表,词表按词频生成
  6. 根据需要修改BiLSTMCRF.py模型结构
  7. 修改public/config.py的参数
  8. 训练前debug看下train_data,train_label对不对
  9. 训练

Model

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, None)              0
_________________________________________________________________
embedding_1 (Embedding)      (None, None, 128)         81408
_________________________________________________________________
bidirectional_1 (Bidirection (None, None, 256)         263168
_________________________________________________________________
dropout_1 (Dropout)          (None, None, 256)         0
_________________________________________________________________
bidirectional_2 (Bidirection (None, None, 128)         164352
_________________________________________________________________
dropout_2 (Dropout)          (None, None, 128)         0
_________________________________________________________________
time_distributed_1 (TimeDist (None, None, 29)          3741
_________________________________________________________________
dropout_3 (Dropout)          (None, None, 29)          0
_________________________________________________________________
crf_1 (CRF)                  (None, None, 29)          1769
=================================================================
Total params: 514,438
Trainable params: 514,438
Non-trainable params: 0
_________________________________________________________________

Train

运行train.py

Epoch 1/500
806/806 [==============================] - 15s 18ms/step - loss: 2.4178 - crf_viterbi_accuracy: 0.9106

Epoch 00001: loss improved from inf to 2.41777, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 2/500
806/806 [==============================] - 10s 13ms/step - loss: 0.6370 - crf_viterbi_accuracy: 0.9106

Epoch 00002: loss improved from 2.41777 to 0.63703, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 3/500
806/806 [==============================] - 11s 14ms/step - loss: 0.5295 - crf_viterbi_accuracy: 0.9106

Epoch 00003: loss improved from 0.63703 to 0.52950, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 4/500
806/806 [==============================] - 11s 13ms/step - loss: 0.4184 - crf_viterbi_accuracy: 0.9064

Epoch 00004: loss improved from 0.52950 to 0.41838, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 5/500
806/806 [==============================] - 12s 14ms/step - loss: 0.3422 - crf_viterbi_accuracy: 0.9104

Epoch 00005: loss improved from 0.41838 to 0.34217, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 6/500
806/806 [==============================] - 10s 13ms/step - loss: 0.3164 - crf_viterbi_accuracy: 0.9106

Epoch 00006: loss improved from 0.34217 to 0.31637, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 7/500
806/806 [==============================] - 10s 12ms/step - loss: 0.3003 - crf_viterbi_accuracy: 0.9111

Epoch 00007: loss improved from 0.31637 to 0.30032, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 8/500
806/806 [==============================] - 10s 12ms/step - loss: 0.2906 - crf_viterbi_accuracy: 0.9117

Epoch 00008: loss improved from 0.30032 to 0.29058, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 9/500
806/806 [==============================] - 9s 12ms/step - loss: 0.2837 - crf_viterbi_accuracy: 0.9118

Epoch 00009: loss improved from 0.29058 to 0.28366, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 10/500
806/806 [==============================] - 9s 11ms/step - loss: 0.2770 - crf_viterbi_accuracy: 0.9142

Epoch 00010: loss improved from 0.28366 to 0.27696, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 11/500
806/806 [==============================] - 10s 12ms/step - loss: 0.2713 - crf_viterbi_accuracy: 0.9160

Evaluate

运行evaluate/f1_score.py

100%|█████████████████████████████████████████| 118/118 [00:38<00:00,  3.06it/s]
TP: 441
TP+FP: 621
precision: 0.7101449275362319
TP+FN: 604
recall: 0.7301324503311258
f1: 0.72

classification report:
              precision    recall  f1-score   support

     ANATOMY       0.74      0.75      0.74       220
    BOUNDARY       1.00      0.75      0.86         8
     DENSITY       0.78      0.88      0.82         8
    DIAMETER       0.82      0.88      0.85        16
     DISEASE       0.54      0.72      0.62        43
   LUNGFIELD       0.83      0.83      0.83         6
      MARGIN       0.57      0.67      0.62         6
      NATURE       0.00      0.00      0.00         6
       ORGAN       0.62      0.62      0.62        13
    QUANTITY       0.88      0.87      0.87        83
       SHAPE       1.00      0.43      0.60         7
        SIGN       0.66      0.65      0.65       189
     TEXTURE       0.75      0.43      0.55         7
   TREATMENT       0.25      0.33      0.29         9

   micro avg       0.71      0.71      0.71       621
   macro avg       0.67      0.63      0.64       621
weighted avg       0.71      0.71      0.71       621

Predict

运行predict/predict_bio.py

DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022