Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Overview

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

This is a PyTorch implementation of the original Lua code release.

Overview

This codebase implements two approaches to learning discrete communication protocols for playing collaborative games: Reinforced Inter-Agent Learning (RIAL), in which agents learn a factorized deep Q-learning policy across game actions and messages, and Differentiable Inter-Agent Learning (DIAL), in which the message vectors are directly learned by backpropagating errors through a noisy communication channel during training, and discretized to binary vectors during test time. While RIAL and DIAL share the same individual network architecture, one would expect learning to be more efficient under DIAL, which directly backpropagates downstream errors during training, a fact that is verified in comparing the performance of the two approaches.

Execution

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt
$ python main.py -c config/switch_3_dial.json

Results for switch game

DIAL vs. RIAL reward curves

This chart was generated by plotting an exponentially-weighted average across 20 trials for each curve.

More info

More generally, main.py takes multiple arguments:

Arg Short Description Required?
--config_path -c path to JSON configuration file
--results_path -r path to directory in which to save results per trial (as csv) -
--ntrials -n number of trials to run -
--start_index -s start-index used as suffix in result filenames -
--verbose -v prints results per training epoch to stdout if set -
Configuration

JSON configuration files passed to main.py should consist of the following key-value pairs:

Key Description Type
game name of the game, e.g. "switch" string
game_nagents number of agents int
game_action_space number of valid game actions int
game_comm_limited true if only some agents can communicate at each step bool
game_comm_bits number of bits per message int
game_comm_sigma standard deviation of Gaussian noise applied by DRU float
game_comm_hard true if use hard discretization, soft approximation otherwise bool
nsteps maximum number of game steps int
gamma reward discount factor for Q-learning float
model_dial true if agents should use DIAL bool
model_comm_narrow true if DRU should use sigmoid for regularization, softmax otherwise bool
model_target true if learning should use a target Q-network bool
model_bn true if learning should use batch normalization bool
model_know_share true if agents should share parameters bool
model_action_aware true if each agent should know their last action bool
model_rnn_size dimension of rnn hidden state int
bs batch size of episodes, run in parallel per epoch int
learningrate learning rate for optimizer (RMSProp) float
momentum momentum for optimizer (RMSProp) float
eps exploration rate for epsilon-greedy exploration float
nepisodes number of epochs, each consisting of parallel episodes int
step_test perform a test episode every this many steps int
step_target update target network every this many steps int
Visualizing results

You can use analyze_results.py to graph results output by main.py. This script will plot the average results across all csv files per path specified after -r. Further, -a can take an alpha value to plot results as exponentially-weighted moving averages, and -l takes an optional list of labels corresponding to the paths.

$ python util/analyze_results -r <paths to results> -a <weight for EWMA>

Bibtex

@inproceedings{foerster2016learning,
    title={Learning to communicate with deep multi-agent reinforcement learning},
    author={Foerster, Jakob and Assael, Yannis M and de Freitas, Nando and Whiteson, Shimon},
    booktitle={Advances in Neural Information Processing Systems},
    pages={2137--2145},
    year={2016} 
}

License

Code licensed under the Apache License v2.0

Owner
Minqi
Minqi
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022