Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Overview

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

This is a PyTorch implementation of the original Lua code release.

Overview

This codebase implements two approaches to learning discrete communication protocols for playing collaborative games: Reinforced Inter-Agent Learning (RIAL), in which agents learn a factorized deep Q-learning policy across game actions and messages, and Differentiable Inter-Agent Learning (DIAL), in which the message vectors are directly learned by backpropagating errors through a noisy communication channel during training, and discretized to binary vectors during test time. While RIAL and DIAL share the same individual network architecture, one would expect learning to be more efficient under DIAL, which directly backpropagates downstream errors during training, a fact that is verified in comparing the performance of the two approaches.

Execution

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt
$ python main.py -c config/switch_3_dial.json

Results for switch game

DIAL vs. RIAL reward curves

This chart was generated by plotting an exponentially-weighted average across 20 trials for each curve.

More info

More generally, main.py takes multiple arguments:

Arg Short Description Required?
--config_path -c path to JSON configuration file
--results_path -r path to directory in which to save results per trial (as csv) -
--ntrials -n number of trials to run -
--start_index -s start-index used as suffix in result filenames -
--verbose -v prints results per training epoch to stdout if set -
Configuration

JSON configuration files passed to main.py should consist of the following key-value pairs:

Key Description Type
game name of the game, e.g. "switch" string
game_nagents number of agents int
game_action_space number of valid game actions int
game_comm_limited true if only some agents can communicate at each step bool
game_comm_bits number of bits per message int
game_comm_sigma standard deviation of Gaussian noise applied by DRU float
game_comm_hard true if use hard discretization, soft approximation otherwise bool
nsteps maximum number of game steps int
gamma reward discount factor for Q-learning float
model_dial true if agents should use DIAL bool
model_comm_narrow true if DRU should use sigmoid for regularization, softmax otherwise bool
model_target true if learning should use a target Q-network bool
model_bn true if learning should use batch normalization bool
model_know_share true if agents should share parameters bool
model_action_aware true if each agent should know their last action bool
model_rnn_size dimension of rnn hidden state int
bs batch size of episodes, run in parallel per epoch int
learningrate learning rate for optimizer (RMSProp) float
momentum momentum for optimizer (RMSProp) float
eps exploration rate for epsilon-greedy exploration float
nepisodes number of epochs, each consisting of parallel episodes int
step_test perform a test episode every this many steps int
step_target update target network every this many steps int
Visualizing results

You can use analyze_results.py to graph results output by main.py. This script will plot the average results across all csv files per path specified after -r. Further, -a can take an alpha value to plot results as exponentially-weighted moving averages, and -l takes an optional list of labels corresponding to the paths.

$ python util/analyze_results -r <paths to results> -a <weight for EWMA>

Bibtex

@inproceedings{foerster2016learning,
    title={Learning to communicate with deep multi-agent reinforcement learning},
    author={Foerster, Jakob and Assael, Yannis M and de Freitas, Nando and Whiteson, Shimon},
    booktitle={Advances in Neural Information Processing Systems},
    pages={2137--2145},
    year={2016} 
}

License

Code licensed under the Apache License v2.0

Owner
Minqi
Minqi
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022