Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

Overview

MyTT

Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python library MyTT.py

Features

  • Innovative application of core tools function,so to writing indicator becomes easy and interesting!
  • Calculate technical indicators (Most of the indicators supported)
  • Produce graphs for any technical indicator
  • MyTT is very very fast! pure numpy and pandas implemented, not need install Ta-lib (talib)
  • MyTT is very simple,only use numpy and pandas even not "for in " in the code
  • Trading automation Quant Trade, Stock Market, Futures market or cryptocoin exchange like BTC
  • Chinese version MyTT Url: https://github.com/mpquant/MyTT
#  ----- 0 level:core tools function ---------

 def MA(S,N):                          
    return pd.Series(S).rolling(N).mean().values   

 def DIFF(S, N=1):         
    return pd.Series(S).diff(N)  
    
 def STD(S,N):              
    return  pd.Series(S).rolling(N).std(ddof=0).values

 def EMA(S,N):               # alpha=2/(span+1)    
    return pd.Series(S).ewm(span=N, adjust=False).mean().values  

 def SMA(S, N, M=1):        #   alpha=1/(1+com)
    return pd.Series(S).ewm(com=N-M, adjust=True).mean().values     

 def AVEDEV(S,N):          
    return pd.Series(S).rolling(N).apply(lambda x: (np.abs(x - x.mean())).mean()).values 

 def IF(S_BOOL,S_TRUE,S_FALSE):  
    return np.where(S_BOOL, S_TRUE, S_FALSE)

 def SUM(S, N):                   
    return pd.Series(S).rolling(N).sum().values if N>0 else pd.Series(S).cumsum()  

 def HHV(S,N):                   
    return pd.Series(S).rolling(N).max().values     

 def LLV(S,N):            
    return pd.Series(S).rolling(N).min().values    
#-----   1 level: Logic and Statistical function  (only use 0 level function to implemented) -----

def COUNT(S_BOOL, N):                  # COUNT(CLOSE>O, N): 
    return SUM(S_BOOL,N)    

def EVERY(S_BOOL, N):                  # EVERY(CLOSE>O, 5)  
    R=SUM(S_BOOL, N)
    return  IF(R==N, True, False)
  
def LAST(S_BOOL, A, B):                   
    if A<B: A=B                        #LAST(CLOSE>OPEN,5,3)  
    return S_BOOL[-A:-B].sum()==(A-B)    

def EXIST(S_BOOL, N=5):                # EXIST(CLOSE>3010, N=5) 
    R=SUM(S_BOOL,N)    
    return IF(R>0, True ,False)

def BARSLAST(S_BOOL):                  
    M=np.argwhere(S_BOOL);             # BARSLAST(CLOSE/REF(CLOSE)>=1.1) 
    return len(S_BOOL)-int(M[-1])-1  if M.size>0 else -1

def FORCAST(S,N):                      
    K,Y=SLOPE(S,N,RS=True)
    return Y[-1]+K
  
def CROSS(S1,S2):                      # GoldCross CROSS(MA(C,5),MA(C,10))  
    CROSS_BOOL=IF(S1>S2, True ,False)  # DieCross CROSS(MA(C,10),MA(C,5))
    return (COUNT(CROSS_BOOL>0,2)==1)*CROSS_BOOL
# ------ Technical Indicators  ( 2 level only use 0,1 level functions to implemented) --------------

def MACD(CLOSE,SHORT=12,LONG=26,M=9):             
    DIF = EMA(CLOSE,SHORT)-EMA(CLOSE,LONG);  
    DEA = EMA(DIF,M);      MACD=(DIF-DEA)*2
    return DIF,DEA,MACD

def KDJ(CLOSE,HIGH,LOW, N=9,M1=3,M2=3):          
    RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100
    K = EMA(RSV, (M1*2-1));    D = EMA(K,(M2*2-1));        J=K*3-D*2
    return K, D, J

def RSI(CLOSE, N=24):                          
    DIF = CLOSE-REF(CLOSE,1) 
    return (SMA(MAX(DIF,0), N) / SMA(ABS(DIF), N) * 100)  

def WR(CLOSE, HIGH, LOW, N=10, N1=6):           
    WR = (HHV(HIGH, N) - CLOSE) / (HHV(HIGH, N) - LLV(LOW, N)) * 100
    WR1 = (HHV(HIGH, N1) - CLOSE) / (HHV(HIGH, N1) - LLV(LOW, N1)) * 100
    return WR, WR1

def BIAS(CLOSE,L1=6, L2=12, L3=24):             
    BIAS1 = (CLOSE - MA(CLOSE, L1)) / MA(CLOSE, L1) * 100
    BIAS2 = (CLOSE - MA(CLOSE, L2)) / MA(CLOSE, L2) * 100
    BIAS3 = (CLOSE - MA(CLOSE, L3)) / MA(CLOSE, L3) * 100
    return BIAS1, BIAS2, BIAS3

def BOLL(CLOSE,N=20, P=2):                          
    MID = MA(CLOSE, N); 
    UPPER = MID + STD(CLOSE, N) * P
    LOWER = MID - STD(CLOSE, N) * P
    return UPPER, MID, LOWER

def PSY(CLOSE,N=12, M=6):  
    PSY=COUNT(CLOSE>REF(CLOSE,1),N)/N*100
    PSYMA=MA(PSY,M)
    return PSY,PSYMA

def CCI(CLOSE,HIGH,LOW,N=14):  
    TP=(HIGH+LOW+CLOSE)/3
    return (TP-MA(TP,N))/(0.015*AVEDEV(TP,N))
        
def ATR(CLOSE,HIGH,LOW, N=20):                    
    TR = MAX(MAX((HIGH - LOW), ABS(REF(CLOSE, 1) - HIGH)), ABS(REF(CLOSE, 1) - LOW))
    return MA(TR, N)

def BBI(CLOSE,M1=3,M2=6,M3=12,M4=20):             
    return (MA(CLOSE,M1)+MA(CLOSE,M2)+MA(CLOSE,M3)+MA(CLOSE,M4))/4    

def DMI(CLOSE,HIGH,LOW,M1=14,M2=6):               
    TR = SUM(MAX(MAX(HIGH - LOW, ABS(HIGH - REF(CLOSE, 1))), ABS(LOW - REF(CLOSE, 1))), M1)
    HD = HIGH - REF(HIGH, 1);     LD = REF(LOW, 1) - LOW
    DMP = SUM(IF((HD > 0) & (HD > LD), HD, 0), M1)
    DMM = SUM(IF((LD > 0) & (LD > HD), LD, 0), M1)
    PDI = DMP * 100 / TR;         MDI = DMM * 100 / TR
    ADX = MA(ABS(MDI - PDI) / (PDI + MDI) * 100, M2)
    ADXR = (ADX + REF(ADX, M2)) / 2
    return PDI, MDI, ADX, ADXR  

  
def TRIX(CLOSE,M1=12, M2=20):                      
    TR = EMA(EMA(EMA(CLOSE, M1), M1), M1)
    TRIX = (TR - REF(TR, 1)) / REF(TR, 1) * 100
    TRMA = MA(TRIX, M2)
    return TRIX, TRMA

def VR(CLOSE,VOL,M1=26):                            
    LC = REF(CLOSE, 1)
    return SUM(IF(CLOSE > LC, VOL, 0), M1) / SUM(IF(CLOSE <= LC, VOL, 0), M1) * 100

def EMV(HIGH,LOW,VOL,N=14,M=9):                     
    VOLUME=MA(VOL,N)/VOL;       MID=100*(HIGH+LOW-REF(HIGH+LOW,1))/(HIGH+LOW)
    EMV=MA(MID*VOLUME*(HIGH-LOW)/MA(HIGH-LOW,N),N);    MAEMV=MA(EMV,M)
    return EMV,MAEMV

def DMA(CLOSE,N1=10,N2=50,M=10):                     
    DIF=MA(CLOSE,N1)-MA(CLOSE,N2);    DIFMA=MA(DIF,M)
    return DIF,DIFMA

def MTM(CLOSE,N=12,M=6):                             
    MTM=CLOSE-REF(CLOSE,N);         MTMMA=MA(MTM,M)
    return MTM,MTMMA

 
def EXPMA(CLOSE,N1=12,N2=50):                       
    return EMA(CLOSE,N1),EMA(CLOSE,N2);

def OBV(CLOSE,VOL):                                 
    return SUM(IF(CLOSE>REF(CLOSE,1),VOL,IF(CLOSE<REF(CLOSE,1),-VOL,0)),0)/10000

Usage Example

from  hb_hq_api import *         #  btc day data on Huobi cryptocoin exchange 
from  MyTT import *              #  to import lib

df=get_price('btc.usdt',count=120,frequency='1d');     #'1d'=1day , '4h'=4hour

#-----------df view-------------------------------------------
open close high low vol
2021-05-16 48983.62 47738.24 49800.00 46500.0 1.333333e+09
2021-05-17 47738.24 43342.50 48098.66 42118.0 3.353662e+09
2021-05-18 43342.50 44093.24 45781.52 42106.0 1.793267e+09
CLOSE=df.close.values     #or  CLOSE=list(df.close)
OPEN =df.open.values           
HIGH =df.high.values    
LOW = df.low.values            

MA5=MA(CLOSE,5)                                       
MA10=MA(CLOSE,10)                                     

RSI12=RSI(CLOSE,12)
CCI12=CCI(CLOSE,12)
ATR20=ATR(CLOSE,HIGH,LOW, N=20)

print('BTC5 MA5', MA5[-1] )                         
print('BTC MA10,RET(MA10))                         # RET(MA10) == MA10[-1]
print('today ma5 coross ma10? ',RET(CROSS(MA5,MA10)))
print('every close price> ma10? ',EVERY(CLOSE>MA10,5) )

BOLL and graphs

up,mid,lower=BOLL(CLOSE)                                       

plt.figure(figsize=(15,8))  
plt.plot(CLOSE,label='shanghai');
plt.plot(up,label='up');        
plt.plot(mid,label='mid'); 
plt.plot(lower,label='lower');
Boll

python lib need to install

  • pandas numpy

DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022