The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Overview

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP)

The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.arxiv

News

We add the implementation of our project Causal-STGAT, where we apply our CausalHTP method to the baseline backbone network STGAT. The code of Causal-STGCNN is coming soon.

Introduction

Most trajectory prediction methods concentrate on modeling the environment interactions and aggregate these interaction clues with history behavior clues for trajectory prediction. However, there are heavy biases in the between training and deployment environment interactions. The motivation of this project is to mitigate the negative effects of the inherent biases. We propose a counterfactual analysis method to alleviate the overdependence of environment bias and highlight the trajectory clues itself. This counterfactual analysis method is a plug-and-play module which can be easily applied to any baseline predictor, and consistently improves the performance on many human trajectory prediction benchmarks.

image Figure 1. Training process of our counterfactual analysis method. We apply the counterfactual intervention by replacing the features of past trajectory with the counterfactual features such as uniform rectilinear motion, mean trajectory, or random trajectory. The counterfactual prediction denotes the biased affect from environment confounder. To alleviate the negative effect of environment bias, we subtract the counterfactual prediction from original prediction as the final causal prediction.

Requirements

  • Python 3.6+
  • PyTorch 1.3

To build all the dependency, you can follow the instruction below.

pip install -r requirements.txt

Dataset

The datasets can be found in datasets/, we provide 5 scenes including eth, hotel, univ, zara1, and zara2.

Training and Evaluation

You can train the model for eth dataset as

python train.py --dataset_name eth

To evaluate the trained model, you can use

python evaluate_model.py --dataset_name eth --resume your_checkpoint.pth.tar

The pre-trained models can be found in pretrain/

Result

Results (ADE/FDE) ETH HOTEL ZARA1 ZARA2 UNIV AVG
STGAT 0.73/1.39 0.38/0.72 0.35/0.69 0.32/0.64 0.57/1.22 0.47/0.93
Causal-STGAT 0.60/0.98 0.30/0.54 0.32/0.64 0.28/0.58 0.52/1.10 0.40/0.77

image Figure 2. Visualization examples of our Causal-STGAT method and baseline Social-STGAT method in the different scenes in the both ETH and UCY datasets. The comparisons quantitatively demonstrate the effectiveness of our counterfactual analysis on the RNN-based baselines.

Citation

Part of the code comes from STGAT. If you find this code useful then please also cite their paper.

Please use the citation provided below if this repo is useful to your research:

@inproceedings{CausalHTP,
  title={Human Trajectory Prediction via Counterfactual Analysis},
  author={Chen, Guangyi and Li, Junlong and Lu, Jiwen and Zhou, Jie},
  booktitle={ICCV},
  year={2021}
}
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022