Code for our ALiBi method for transformer language models.

Overview

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation

This repository contains the code and models for our paper Train Short, Test Long. This file explains how to run our experiments on the WikiText-103 dataset. Read the paper here.

Attention with Linear Biases (ALiBi) is very simple! Instead of adding position embeddings at the bottom of the transformer stack (which we don't) we add a linear bias to each attention score, as depicted in the figure above. The 'm' hyperparam is head-specific and is not learned- it is set at the beginning of training. We have a function that automatically generates these m values given the number of heads in the model.

ALiBi allows the model to be trained on, for example, 1024 tokens, and then do inference on 2048 (or much more) tokens without any finetuning. It's also able to improve performance, even when not extrapolating, in lower resource language modeling settings.

The implementation is very simple.

  1. Remove the position embeddings from the model: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L941
  2. Set up the relative bias matrix, here: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L742
  3. Add the bias matrix to the mask, which is then added in each attention score computation: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L1011
  4. (This might not be necessary in other frameworks.) Move the mask computation to before the layer loop, to make the transformer a tiny bit faster: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L949

Thats it!

Citation:

@misc{press2021train,
      title={Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation}, 
      author={Ofir Press and Noah A. Smith and Mike Lewis},
      year={2021},
      eprint={2108.12409},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

WikiText-103

Requirements and Installation

This repository is a fork of the Fairseq repository and so has the same requirements.

Once you've installed the dependencies, you can install this repository by running:

pip install --editable .

Preparing the data

To download and preprocess the data, run:

cd examples/language_model/
bash prepare-wikitext-103.sh
cd ../..


TEXT=examples/language_model/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Training and Inference

To train a language model with attention with linear baises (ALiBi), on input sequences with 512 tokens, run:

python train.py --task language_modeling     data-bin/wikitext-103     --save-dir wt103/  --arch transformer_lm_wiki103     --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75     --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 --optimizer nag --lr 0.0001 --clip-norm 0.1     --criterion adaptive_loss --seed 1 --fp16     --sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=no_c10d --no-epoch-checkpoints --tokens-per-sample 512 --max-tokens 9216 --update-freq 1  

For input sequences larger than 512 (and up to 2048) tokens, just change the --tokens-per-sample.

To train the model with inputs of 3072 tokens, the --update-freq parameter must be changed to 3 and the --max-tokens parameter must be reduced to 3072.

Saved Checkpoints

If you'd like to download our trained models on WikiText-103, they are available here:

Input Length Link
64 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L64.pt
128 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L128.pt
256 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L256.pt
512 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L512.pt
1024 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L1024.pt
1536 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L1536.pt
2048 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L2048.pt
3072 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L3072.pt

Rename the file you downloaded to checkpoint_best.pt if you'd like to follow the directions below.

Inference

For nonoverlapping evaluation of the validation set, run:

l=1024; fairseq-eval-lm data-bin/wikitext-103/     --path wt103/checkpoint_best.pt  --sample-break-mode none --gen-subset valid   --max-sentences 1 --model-overrides "{'max_tokens':$l, 'tokens_per_sample':$l, 'max_target_positions':$l}"  --tokens-per-sample $l --max-tokens $l  --max-target-positions $l  --context-window 0

where l is set to the length of input subsequences during validation (l=1024 in the above example).

Owner
Ofir Press
PhD student @uwnlp
Ofir Press
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022