Implementation of Change-Based Exploration Transfer (C-BET)

Overview

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

This code was built on the RIDE repository.

Codebase and MiniGrid Installation

conda create -n cbet python=3.8.10
conda activate cbet
git clone [email protected]:sparisi/cbet.git
cd cbet
pip install -r requirements.txt

Habitat Installation (not Needed for MiniGrid Experiments)

  • Follow the official guide and do a full install with habitat_baselines.
  • Download and extract Replica scenes in the root folder of cbet

WARNING! The dataset is very large!

sudo apt-get install pigz
git clone https://github.com/facebookresearch/Replica-Dataset.git
cd Replica-Dataset
./download.sh replica-path

If the script does not work, manually unzip with cat replica_v1_0.tar.gz.part* | tar -xz

How to Run Experiments

  • Intrinsic-only pre-training: OMP_NUM_THREADS=1 python main.py --model cbet --env --no_reward --intrinsic_reward_coef=0.005

  • Extrinsic-only transfer with pre-trained model: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.0 --checkpoint=path/to/model.tar

  • Tabula-rasa training with summed intrinsic and extrinsic reward: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.005

See src/arguments.py for the full list of hyperparameters.

For MiniGrid, can be MiniGrid-DoorKey-8x8-v0, MiniGrid-Unlock-v0, ...
For Habitat, can be HabitatNav-apartment_0, HabitatNav-hotel_0, ...

You might also like...
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Generative Exploration and Exploitation - This is an improved version of GENE.
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

 TransCD: Scene Change Detection via Transformer-based Architecture
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

Comments
  • Bugfixes

    Bugfixes

    • Fixed a crash with Habitat environment in test script due to missing directory
    • Fixed an issue where count_reset_prob is referenced, but is not tracked in the ArgumentParser by removing it
    • Worked around a PyTorch memory bug (Ubuntu 21.10 + Driver Version: 495.29.05 + CUDA Version: 11.5 + torch version: 1.10.1+cu113)
      • Failed to allocate SHM despite plenty of available handles and many GiB of both system and GPU memory
      • Error message indicated an internal PyTorch bug, with instructions for filing a ticket
    opened by rothn 0
  • Problem about intrinsic reward at pre-training stage

    Problem about intrinsic reward at pre-training stage

    Hi,

    I think I meet a problem that my results of intrinsic reward is about 0.0014 after training of 4e7 frames and I just follow the instruction of github without changing any parameters, the environments I use is MiniGrid-KeyCorridorS3R3-v0,MiniGrid-MultiRoom-N4-S5-v0,MiniGrid-UnlockPickup-v0, which are mentioned in the paper as pre-training of many-to-many transfer. Therefore, I don't know whether there are something I missed. Hoping you can help me. Thx a lot.

    opened by dong845 2
  • Pretrained Model

    Pretrained Model

    One of my favorite components of the C-BET paper was the proposed paradigm shift from tabula-rasa exploration for each task to a system where new environments are explored with the context carried over from a pretrained model. I've found that a practical starting point for similar procedures on other large models (e.g., BERTs, ResNets) is to obtain a copy of the pre-trained model. I'd love to start working with C-BET as well!

    I'm very curious as to where I might be able to find the C-BET parameters from your paper. Looking forward to experimenting with this!

    opened by rothn 9
Releases(v1)
Owner
Simone Parisi
Simone Parisi
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022