Implementation of Change-Based Exploration Transfer (C-BET)

Overview

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

This code was built on the RIDE repository.

Codebase and MiniGrid Installation

conda create -n cbet python=3.8.10
conda activate cbet
git clone [email protected]:sparisi/cbet.git
cd cbet
pip install -r requirements.txt

Habitat Installation (not Needed for MiniGrid Experiments)

  • Follow the official guide and do a full install with habitat_baselines.
  • Download and extract Replica scenes in the root folder of cbet

WARNING! The dataset is very large!

sudo apt-get install pigz
git clone https://github.com/facebookresearch/Replica-Dataset.git
cd Replica-Dataset
./download.sh replica-path

If the script does not work, manually unzip with cat replica_v1_0.tar.gz.part* | tar -xz

How to Run Experiments

  • Intrinsic-only pre-training: OMP_NUM_THREADS=1 python main.py --model cbet --env --no_reward --intrinsic_reward_coef=0.005

  • Extrinsic-only transfer with pre-trained model: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.0 --checkpoint=path/to/model.tar

  • Tabula-rasa training with summed intrinsic and extrinsic reward: OMP_NUM_THREADS=1 python main.py --model cbet --env --intrinsic_reward_coef=0.005

See src/arguments.py for the full list of hyperparameters.

For MiniGrid, can be MiniGrid-DoorKey-8x8-v0, MiniGrid-Unlock-v0, ...
For Habitat, can be HabitatNav-apartment_0, HabitatNav-hotel_0, ...

You might also like...
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Generative Exploration and Exploitation - This is an improved version of GENE.
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

 TransCD: Scene Change Detection via Transformer-based Architecture
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

Comments
  • Bugfixes

    Bugfixes

    • Fixed a crash with Habitat environment in test script due to missing directory
    • Fixed an issue where count_reset_prob is referenced, but is not tracked in the ArgumentParser by removing it
    • Worked around a PyTorch memory bug (Ubuntu 21.10 + Driver Version: 495.29.05 + CUDA Version: 11.5 + torch version: 1.10.1+cu113)
      • Failed to allocate SHM despite plenty of available handles and many GiB of both system and GPU memory
      • Error message indicated an internal PyTorch bug, with instructions for filing a ticket
    opened by rothn 0
  • Problem about intrinsic reward at pre-training stage

    Problem about intrinsic reward at pre-training stage

    Hi,

    I think I meet a problem that my results of intrinsic reward is about 0.0014 after training of 4e7 frames and I just follow the instruction of github without changing any parameters, the environments I use is MiniGrid-KeyCorridorS3R3-v0,MiniGrid-MultiRoom-N4-S5-v0,MiniGrid-UnlockPickup-v0, which are mentioned in the paper as pre-training of many-to-many transfer. Therefore, I don't know whether there are something I missed. Hoping you can help me. Thx a lot.

    opened by dong845 2
  • Pretrained Model

    Pretrained Model

    One of my favorite components of the C-BET paper was the proposed paradigm shift from tabula-rasa exploration for each task to a system where new environments are explored with the context carried over from a pretrained model. I've found that a practical starting point for similar procedures on other large models (e.g., BERTs, ResNets) is to obtain a copy of the pre-trained model. I'd love to start working with C-BET as well!

    I'm very curious as to where I might be able to find the C-BET parameters from your paper. Looking forward to experimenting with this!

    opened by rothn 9
Releases(v1)
Owner
Simone Parisi
Simone Parisi
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022