OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Overview

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling

OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model. This software is developed to perform analyses on a network-scale visual inspection data, while accounting for the uncertainty associated with each inspector. The main application window in OpenIPDM enables assessing the structural deterioration behaviour and the effect of interventions at different levels starting from the structural element level up to the network level. OpenIPDM also include several toolboxes that facilitate performing verification and validation analyses on visual inspection data, in addition to learning model parameters. Furthermore, OpenIPDM has the capacity to handle missing data such as, missing interventions or missing structural attributes.

For tutorials, see: YouTube channel.

How to cite

OpenIPDM: A Probabilistic Framework for Estimating the Deterioration and Effect of Interventions on Bridges
Hamida, Z., Laurent, B. and Goulet, J.-A.
SoftwareX (Submitted, January 2022)

Prerequisites

  • Matlab (version 2020b or higher) installed on Mac OSX or Windows.

  • The Matlab Statistics and Machine Learning Toolbox is required.

  • Access to GPU computing (required only for Model Training toolbox)

  • Figures for LaTeX matlab2tikz (Optional)

Installation

  1. Download and extract the ZIP file or clone the git repository in your working directory.
  2. The working directory should include the following folders:
    • Scripts
    • Tools
    • Parameters
    • Network Data
    • Figures
    • ExtractedData
    • Help
  3. Double-click OpenIPDM.mlapp file to start MATLAB App Designer, and from the top ribbon in App Designer, click Run

Getting started

After starting OpenIPDM, the main user interface will open along with a message box to load the database. Note that the message box will not show up, if pre-processed data already exist in the folder Network Data. If you do not see anything except Matlab errors verify your Matlab version, and your Matlab path.

Input

OpenIPDM takes as an input two types of file formats

  1. '.csv': this file format is generally considered for the raw database.
  2. '.mat': for files containing model paramters and/or pre-processed database.

Output

OpenIPDM generally provides the following outputs:

  1. Deterioration state estimates.
  2. Service-life of an intervention.
  3. Effect of interventions.
  4. Synthetic time series of visual inspections.

Further details about the outputs can be found in the OpenIPDM documentation manual.

Remarks

The OpenIPDM package is originally developed based on the inspection and interventions database of the Transportation Ministry of Quebec (MTQ).

Built With

Contributing

Please read CONTRIBUTING.md for details on the process for submitting pull requests.

Authors

  • Zachary Hamida - Methodology, initial code and development - webpage
  • Blanche Laurent - Analytical inference for inspectors uncertainty - webpage
  • James-A. Goulet - Methodology - webpage

License

This project is licensed under the MIT license - see the LICENSE file for details

Acknowledgments

Owner
CIVML
CIVML
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022