Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Overview

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Contact [email protected] or [email protected] for questions.

Running code

Install packages

pip install -r requirements.txt 

Recommender

We use the recommenders implemented under our project for adversarial counterfactual learning published in NIPS 2020.

  • Step 1: clone the project to your local directory.

  • Step 2: pip install . to install the library.

Item features

The data ml-1m.zip is under the data folder. We need to generate the movies and users features before running the simulations.

cd data & unzip ml-1m.zip
cd ml-1m
python base_embed.py # This generates base movie and user features vector

Simulation

Assume you are in the project's main folder:

python run.py #This will runs all defined simulation routines defined in simulation.py

Optional argument:

usage: System Bandit Simulation [-h] [--dim DIM] [--topk TOPK] [--num_epochs NUM_EPOCHS] [--epsilon EPSILON] [--explore_step EXPLORE_STEP] [--feat_map {onehot,context,armed_context,onehot_context}]
                                [--algo {base,e_greedy,thomson,lin_ct,optimal}]

optional arguments:
  -h, --help            show this help message and exit
  --dim DIM
  --topk TOPK
  --num_epochs NUM_EPOCHS
  --epsilon EPSILON
  --explore_step EXPLORE_STEP
  --feat_map {onehot,context,armed_context,onehot_context}
  --algo {base,e_greedy,thomson,lin_ct,optimal}

Major class

Environment

This class implement the simulation logics described in our paper. For each user, we runs the get_epoch method, which returns an refreshed simulator based on the last interaction with the user.

Example:

float: """Return the reward given selected arm and the recommendations""" pass # Example usage BanditData = List[Tuple[int, float, Any]] data: BanditData = [] for uidx, recall_set in env.get_epoch(): arm = algo.predict() recommendations = bandit_ins.get_arm(arm).recommend(uidx, recall_set, top_k) reward = env.action(uidx, recommendations) data.append((arm, reward, None)) algo.update(data) algo.record_metric(data) ">
class Environment:
    def get_epoch(self, shuffle: bool = True):
        """Return updated environment iterator"""
        return EpochIter(self, shuffle)

    def action(self, uidx: int, recommendations: List[int]) -> float:
        """Return the reward given selected arm and the recommendations"""
        pass

# Example usage
BanditData = List[Tuple[int, float, Any]]
data: BanditData = []
for uidx, recall_set in env.get_epoch():
    arm = algo.predict()
    recommendations = bandit_ins.get_arm(arm).recommend(uidx, recall_set, top_k)
    reward = env.action(uidx, recommendations)
    data.append((arm, reward, None))
algo.update(data)
algo.record_metric(data) 

BanditAlgorithm

The BanditALgorithm implement the interfaces for any bandit algorithms evaluated in this project.

class BanditAlgorithm:
    def predict(self, *args, **kwds) -> int:
        """Return the estimated return for contextual bandit"""
        pass

    def update(self, data: BanditData):
        """Update the algorithms based on observed (action, reward, context)"""
        pass

    def record_metric(self, data: BanditData):
        """Record the cumulative performance metrics for this algorithm"""
        pass
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023