[ICCV 2021 Oral] Deep Evidential Action Recognition

Overview

DEAR (Deep Evidential Action Recognition)

Project | Paper & Supp

Wentao Bao, Qi Yu, Yu Kong

International Conference on Computer Vision (ICCV Oral), 2021.

Table of Contents

  1. Introduction
  2. Installation
  3. Datasets
  4. Testing
  5. Training
  6. Model Zoo
  7. Citation

Introduction

We propose the Deep Evidential Action Recognition (DEAR) method to recognize actions in an open world. Specifically, we formulate the action recognition problem from the evidential deep learning (EDL) perspective and propose a novel model calibration method to regularize the EDL training. Besides, to mitigate the static bias of video representation, we propose a plug-and-play module to debias the learned representation through contrastive learning. Our DEAR model trained on UCF-101 dataset achieves significant and consistent performance gains based on multiple action recognition models, i.e., I3D, TSM, SlowFast, TPN, with HMDB-51 or MiT-v2 dataset as the unknown.

Demo

The following figures show the inference results by the SlowFast + DEAR model trained on UCF-101 dataset.

UCF-101
(Known)

1 2 3 4

HMDB-51
(Unknown)

6 7 8 10

Installation

This repo is developed from MMAction2 codebase. Since MMAction2 is updated in a fast pace, most of the requirements and installation steps are similar to the version MMAction2 v0.9.0.

Requirements and Dependencies

Here we only list our used requirements and dependencies. It would be great if you can work around with the latest versions of the listed softwares and hardwares on the latest MMAction2 codebase.

  • Linux: Ubuntu 18.04 LTS
  • GPU: GeForce RTX 3090, A100-SXM4
  • CUDA: 11.0
  • GCC: 7.5
  • Python: 3.7.9
  • Anaconda: 4.9.2
  • PyTorch: 1.7.1+cu110
  • TorchVision: 0.8.2+cu110
  • OpenCV: 4.4.0
  • MMCV: 1.2.1
  • MMAction2: 0.9.0

Installation Steps

The following steps are modified from MMAction2 (v0.9.0) installation document. If you encountered problems, you may refer to more details in the official document, or raise an issue in this repo.

a. Create a conda virtual environment of this repo, and activate it:

conda create -n mmaction python=3.7 -y
conda activate mmaction

b. Install PyTorch and TorchVision following the official instructions, e.g.,

conda install pytorch=1.7.1 cudatoolkit=11.0 torchvision=0.8.2 -c pytorch

c. Install mmcv, we recommend you to install the pre-build mmcv as below.

pip install mmcv-full==1.2.1 -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.1/index.html

Important: If you have already installed mmcv and try to install mmcv-full, you have to uninstall mmcv first by running pip uninstall mmcv. Otherwise, there will be ModuleNotFoundError.

d. Clone the source code of this repo:

git clone https://github.com/Cogito2012/DEAR.git mmaction2
cd mmaction2

e. Install build requirements and then install DEAR.

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

If no error appears in your installation steps, then you are all set!

Datasets

This repo uses standard video action datasets, i.e., UCF-101 for closed set training, and HMDB-51 and MiT-v2 test sets as two different unknowns. Please refer to the default MMAction2 dataset setup steps to setup these three datasets correctly.

Note: You can just ignore the Step 3. Extract RGB and Flow in the referred setup steps since all codes related to our paper do not rely on extracted frames and optical flow. This will save you large amount of disk space!

Testing

To test our pre-trained models (see the Model Zoo), you need to download a model file and unzip it under work_dir. Let's take the I3D-based DEAR model as an example. First, download the pre-trained I3D-based models, where the full DEAR model is saved in the folder finetune_ucf101_i3d_edlnokl_avuc_debias. The following directory tree is for your reference to place the downloaded files.

work_dirs    
├── i3d
│    ├── finetune_ucf101_i3d_bnn
│    │   └── latest.pth
│    ├── finetune_ucf101_i3d_dnn
│    │   └── latest.pth
│    ├── finetune_ucf101_i3d_edlnokl
│    │   └── latest.pth
│    ├── finetune_ucf101_i3d_edlnokl_avuc_ced
│    │   └── latest.pth
│    ├── finetune_ucf101_i3d_edlnokl_avuc_debias
│    │   └── latest.pth
│    └── finetune_ucf101_i3d_rpl
│        └── latest.pth
├── slowfast
├── tpn_slowonly
└── tsm

a. Closed Set Evaluation.

Top-K accuracy and mean class accuracy will be reported.

cd experiments/i3d
bash evaluate_i3d_edlnokl_avuc_debias_ucf101.sh

b. Get Uncertainty Threshold.

The threshold value of one model will be reported.

cd experiments/i3d
# run the thresholding with BATCH_SIZE=2 on GPU_ID=0
bash run_get_threshold.sh 0 edlnokl_avuc_debias 2

c. Open Set Evaluation and Comparison.

The open set evaluation metrics and openness curves will be reported.

Note: Make sure the threshold values of different models are from the reported results in step b.

cd experiments/i3d
bash run_openness.sh HMDB  # use HMDB-51 test set as the Unknown
bash run_openness.sh MiT  # use MiT-v2 test set as the Unknown

d. Out-of-Distribution Detection.

The uncertainty distribution figure of a specified model will be reported.

cd experiments/i3d
bash run_ood_detection.sh 0 HMDB edlnokl_avuc_debias

e. Draw Open Set Confusion Matrix

The confusion matrix with unknown dataset used will be reported.

cd experiments/i3d
bash run_draw_confmat.sh HMDB  # or MiT

Training

Let's still take the I3D-based DEAR model as an example.

cd experiments/i3d
bash finetune_i3d_edlnokl_avuc_debias_ucf101.sh 0

Since model training is time consuming, we strongly recommend you to run the above training script in a backend way if you are using SSH remote connection.

nohup bash finetune_i3d_edlnokl_avuc_debias_ucf101.sh 0 >train.log 2>&1 &
# monitoring the training status whenever you open a new terminal
tail -f train.log

Visualizing the training curves (losses, accuracies, etc.) on TensorBoard:

cd work_dirs/i3d/finetune_ucf101_i3d_edlnokl_avuc_debias/tf_logs
tensorboard --logdir=./ --port 6008

Then, you will see the generated url address http://localhost:6008. Open this address with your Internet Browser (such as Chrome), you will monitoring the status of training.

If you are using SSH connection to a remote server without monitor, tensorboard visualization can be done on your local machine by manually mapping the SSH port number:

ssh -L 16008:localhost:6008 {your_remote_name}@{your_remote_ip}

Then, you can monitor the tensorboard by the port number 16008 by typing http://localhost:16008 in your browser.

Model Zoo

The pre-trained weights (checkpoints) are available below.

Model Checkpoint Train Config Test Config Open maF1 (%) Open Set AUC (%) Closed Set ACC (%)
I3D + DEAR ckpt train test 77.24 / 69.98 77.08 / 81.54 93.89
TSM + DEAR ckpt train test 84.69 / 70.15 78.65 / 83.92 94.48
TPN + DEAR ckpt train test 81.79 / 71.18 79.23 / 81.80 96.30
SlowFast + DEAR ckpt train test 85.48 / 77.28 82.94 / 86.99 96.48

For other checkpoints of the compared baseline models, please download them in the Google Drive.

Citation

If you find the code useful in your research, please cite:

@inproceedings{BaoICCV2021DEAR,
  author = "Bao, Wentao and Yu, Qi and Kong, Yu",
  title = "Evidential Deep Learning for Open Set Action Recognition",
  booktitle = "International Conference on Computer Vision (ICCV)",
  year = "2021"
}

License

See Apache-2.0 License

Acknowledgement

In addition to the MMAction2 codebase, this repo contains modified codes from:

We sincerely thank the owners of all these great repos!

Owner
Wentao Bao
Ph.D. Student
Wentao Bao
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022