Feature extraction made simple with torchextractor

Overview

torchextractor: PyTorch Intermediate Feature Extraction

PyPI - Python Version PyPI Read the Docs Upload Python Package GitHub

Introduction

Too many times some model definitions get remorselessly copy-pasted just because the forward function does not return what the person expects. You provide module names and torchextractor takes care of the extraction for you.It's never been easier to extract feature, add an extra loss or plug another head to a network. Ler us know what amazing things you build with torchextractor!

Installation

pip install torchextractor  # stable
pip install git+https://github.com/antoinebrl/torchextractor.git  # latest

Requirements:

  • Python >= 3.6+
  • torch >= 1.4.0

Usage

import torch
import torchvision
import torchextractor as tx

model = torchvision.models.resnet18(pretrained=True)
model = tx.Extractor(model, ["layer1", "layer2", "layer3", "layer4"])
dummy_input = torch.rand(7, 3, 224, 224)
model_output, features = model(dummy_input)
feature_shapes = {name: f.shape for name, f in features.items()}
print(feature_shapes)

# {
#   'layer1': torch.Size([1, 64, 56, 56]),
#   'layer2': torch.Size([1, 128, 28, 28]),
#   'layer3': torch.Size([1, 256, 14, 14]),
#   'layer4': torch.Size([1, 512, 7, 7]),
# }

See more examples Binder Open In Colab

Read the documentation

FAQ

• How do I know the names of the modules?

You can print all module names like this:

tx.list_module_names(model)

# OR

for name, module in model.named_modules():
    print(name)

• Why do some operations not get listed?

It is not possible to add hooks if operations are not defined as modules. Therefore, F.relu cannot be captured but nn.Relu() can.

• How can I avoid listing all relevant modules?

You can specify a custom filtering function to hook the relevant modules:

# Hook everything !
module_filter_fn = lambda module, name: True

# Capture of all modules inside first layer
module_filter_fn = lambda module, name: name.startswith("layer1")

# Focus on all convolutions
module_filter_fn = lambda module, name: isinstance(module, torch.nn.Conv2d)

model = tx.Extractor(model, module_filter_fn=module_filter_fn)

• Is it compatible with ONNX?

tx.Extractor is compatible with ONNX! This means you can also access intermediate features maps after the export.

Pro-tip: name the output nodes by using output_names when calling torch.onnx.export.

• Is it compatible with TorchScript?

Not yet, but we are working on it. Compiling registered hook of a module was just recently added in PyTorch v1.8.0.

• "One more thing!" 😉

By default we capture the latest output of the relevant modules, but you can specify your own custom operations.

For example, to accumulate features over 10 forward passes you can do the following:

import torch
import torchvision
import torchextractor as tx

model = torchvision.models.resnet18(pretrained=True)

def capture_fn(module, input, output, module_name, feature_maps):
    if module_name not in feature_maps:
        feature_maps[module_name] = []
    feature_maps[module_name].append(output)

extractor = tx.Extractor(model, ["layer3", "layer4"], capture_fn=capture_fn)

for i in range(20):
    for i in range(10):
        x = torch.rand(7, 3, 224, 224)
        model(x)
    feature_maps = extractor.collect()

    # Do your stuffs here

    # Discard collected elements
    extractor.clear_placeholder()

Contributing

All feedbacks and contributions are welcomed. Feel free to report an issue or to create a pull request!

If you want to get hands-on:

  1. (Fork and) clone the repo.
  2. Create a virtual environment: virtualenv -p python3 .venv && source .venv/bin/activate
  3. Install dependencies: pip install -r requirements.txt && pip install -r requirements-dev.txt
  4. Hook auto-formatting tools: pre-commit install
  5. Hack as much as you want!
  6. Run tests: python -m unittest discover -vs ./tests/
  7. Share your work and create a pull request.

To Build documentation:

cd docs
pip install requirements.txt
make html
You might also like...
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

This repository contains the code for our fast polygonal building extraction from overhead images pipeline.
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).

Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

Comments
  • Only extracting part of the intermediate feature with DataParallel

    Only extracting part of the intermediate feature with DataParallel

    Hi @antoinebrl,

    I am using torch.nn.DataParallel on a 2-GPU machine with a batch size of N. Data parallel training will split the input data batch into 2 pieces sequentially and sends them to GPUs.

    When using torchextractor to obtain the intermediate feature, the input data size and the output size are both N as expected, but the feature size becomes N/2. Does this mean we only extract the features of one GPU? I'm not sure because I didn't find an exact match.

    Can you please explain why this happens? Maybe the normal behavior is returning features from all GPUs or from a specified one?

    A minimal example to reproduce:

    import torch
    import torchvision
    import torchextractor as tx
    
    model = torchvision.models.resnet18(pretrained=True)
    model_gpu = torch.nn.DataParallel(torchvision.models.resnet18(pretrained=True))
    model_gpu.cuda()
    
    model = tx.Extractor(model, ["layer1"])
    model_gpu = tx.Extractor(model_gpu, ["module.layer1"])
    dummy_input = torch.rand(8, 3, 224, 224)
    _, features = model(dummy_input)
    _, features_gpu = model_gpu(dummy_input)
    feature_shapes = {name: f.shape for name, f in features.items()}
    print(feature_shapes)
    feature_shapes_gpu = {name: f.shape for name, f in features_gpu.items()}
    print(feature_shapes_gpu)
    
    # {'layer1': torch.Size([8, 64, 56, 56])}
    # {'module.layer1': torch.Size([4, 64, 56, 56])}
    
    opened by wydwww 5
Releases(v0.3.0)
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022