PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

Overview

End-to-End Coreference Resolution with Different Higher-Order Inference Methods

This repository contains the implementation of the paper: Revealing the Myth of Higher-Order Inference in Coreference Resolution.

Architecture

The basic end-to-end coreference model is a PyTorch re-implementation based on the TensorFlow model following similar preprocessing (see this repository).

There are four higher-order inference (HOI) methods experimented: Attended Antecedent, Entity Equalization, Span Clustering, and Cluster Merging. All are included here except for Entity Equalization which is experimented in the equivalent TensorFlow environment (see this separate repository).

Files:

Basic Setup

Set up environment and data for training and evaluation:

  • Install Python3 dependencies: pip install -r requirements.txt
  • Create a directory for data that will contain all data files, models and log files; set data_dir = /path/to/data/dir in experiments.conf
  • Prepare dataset (requiring OntoNotes 5.0 corpus): ./setup_data.sh /path/to/ontonotes /path/to/data/dir

For SpanBERT, download the pretrained weights from this repository, and rename it /path/to/data/dir/spanbert_base or /path/to/data/dir/spanbert_large accordingly.

Evaluation

Provided trained models:

The name of each directory corresponds with a configuration in experiments.conf. Each directory has two trained models inside.

If you want to use the official evaluator, download and unzip conll 2012 scorer under this directory.

Evaluate a model on the dev/test set:

  • Download the corresponding model directory and unzip it under data_dir
  • python evaluate.py [config] [model_id] [gpu_id]
    • e.g. Attended Antecedent:python evaluate.py train_spanbert_large_ml0_d2 May08_12-38-29_58000 0

Prediction

Prediction on custom input: see python predict.py -h

  • Interactive user input: python predict.py --config_name=[config] --model_identifier=[model_id] --gpu_id=[gpu_id]
    • E.g. python predict.py --config_name=train_spanbert_large_ml0_d1 --model_identifier=May10_03-28-49_54000 --gpu_id=0
  • Input from file (jsonlines file of this format): python predict.py --config_name=[config] --model_identifier=[model_id] --gpu_id=[gpu_id] --jsonlines_path=[input_path] --output_path=[output_path]

Training

python run.py [config] [gpu_id]

  • [config] can be any configuration in experiments.conf
  • Log file will be saved at your_data_dir/[config]/log_XXX.txt
  • Models will be saved at your_data_dir/[config]/model_XXX.bin
  • Tensorboard is available at your_data_dir/tensorboard

Configurations

Some important configurations in experiments.conf:

  • data_dir: the full path to the directory containing dataset, models, log files
  • coref_depth and higher_order: controlling the higher-order inference module
  • bert_pretrained_name_or_path: the name/path of the pretrained BERT model (HuggingFace BERT models)
  • max_training_sentences: the maximum segments to use when document is too long; for BERT-Large and SpanBERT-Large, set to 3 for 32GB GPU or 2 for 24GB GPU

Citation

@inproceedings{xu-choi-2020-revealing,
    title = "Revealing the Myth of Higher-Order Inference in Coreference Resolution",
    author = "Xu, Liyan  and  Choi, Jinho D.",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.686",
    pages = "8527--8533"
}
Owner
Liyan
PhD student at Emory University (NLP Lab).
Liyan
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022