DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

Overview

DeepMetaHandles (CVPR2021 Oral)

[paper] [animations]

DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given shape. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation direction. A new deformation can then be generated by the "linear combination" of the meta-handles. Although the approach is learned in an unsupervised manner, the learned meta-handles possess strong interpretability and consistency.

Environment setup

  1. Create a conda environment by conda env create -f environment.yml.
  2. Build and install torch-batch-svd.

Demo

  1. Download data/demo and checkpoints/chair_15.pth from here and place them in the corresponding folder. Pre-processed demo data contains the manifold mesh, sampled control point, sampled surface point cloud, and corresponding biharmonic coordinates.
  2. Run src/demo_target_driven_deform.py to deform a source shape to match a target shape.
  3. Run src/demo_meta_handle.py to generate deformations along the direction of each learned meta-handle.

Train

  1. Download data/chair from here and place them in the corresponding folder.
  2. Run the visdom server. (We use visdom to visualize the training process.)
  3. Run src/train.py to start training.

Note: For different categories, you may need to adjust the number of meta-handles. Also, you need to tune the weights for the loss functions. Different sets of weights may produce significantly different results.

Pre-process your own data

  1. Compile codes in data_preprocessing/.
  2. Build and run manifold to convert your meshes into watertight manifolds.
  3. Run data_preprocessing/normalize_bin to normalize the manifold into a unit bounding sphere.
  4. Build and run fTetWild to convert your manifolds into tetrahedral meshes. Please use --output xxx.mesh option to generate the .mesh format tet mesh. Also, you will get a xxx.mesh__sf.obj for the surface mesh. We will use xxx.mesh and xxx.mesh__sf.obj to calculate the biharmonic weights. We will only deform xxx.mesh__sf.obj later.
  5. Run data_preprocessing/sample_key_points_bin to sample control points from xxx.mesh__sf.obj. We use the FPS algorithm over edge distances to sample the control points.
  6. Run data_preprocessing/calc_weight_bin to calculate the bihrnomic weights. It takes xxx.mesh, xxx.mesh__sf.obj, and the control point file as input, and will output a text file containing the weight matrix for the vertices in xxx.mesh__sf.obj.
  7. Run data_preprocessing/sample_surface_points_bin to sample points on the xxx.mesh__sf.obj and calculate the corresponding biharmonic weights for the sampled point cloud.
  8. In our training, we remove those shapes (about 10%) whose biharmonic weight matrix contains elements that are smaller than -1.5 or greater than 1.5. We find that this can help us to converge faster.
  9. To reduce IO time during training, you may compress the data into a compact form and load them to the memory.

Citation

If you find our work useful, please consider citing our paper:

@article{liu2021deepmetahandles,
  title={DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates},
  author={Liu, Minghua and Sung, Minhyuk and Mech, Radomir and Su, Hao},
  journal={arXiv preprint arXiv:2102.09105},
  year={2021}
}
Owner
Liu Minghua
Liu Minghua
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021