Posterior predictive distributions quantify uncertainties ignored by point estimates.

Overview

The Neural Testbed

Neural Testbed Logo

Introduction

Posterior predictive distributions quantify uncertainties ignored by point estimates. The neural_testbed provides tools for the systematic evaluation of agents that generate such predictions. Crucially, these tools assess not only the quality of marginal predictions per input, but also joint predictions given many inputs. Joint distributions are often critical for useful uncertainty quantification, but they have been largely overlooked by the Bayesian deep learning community.

This library automates the evaluation and analysis of learning agents:

  • Synthetic neural-network-based generative model.
  • Evaluate predictions beyond marginal distributions.
  • Reference implementations of benchmark agents (with tuning).

For a more comprehensive overview, see the accompanying paper.

Technical overview

We outline the key high-level interfaces for our code in base.py:

  • EpistemicSampler: Generates a random sample from agent's predictive distribution.
  • TestbedAgent: Given data, prior_knowledge outputs an EpistemicSampler.
  • TestbedProblem: Reveals training_data, prior_knowledge. Can evaluate the quality of an EpistemicSampler.

If you want to evaluate your algorithm on the testbed, you simply need to define your TestbedAgent and then run it on our experiment.py

def run(agent: testbed_base.TestbedAgent,
        problem: testbed_base.TestbedProblem) -> testbed_base.ENNQuality:
  """Run an agent on a given testbed problem."""
  enn_sampler = agent(problem.train_data, problem.prior_knowledge)
  return problem.evaluate_quality(enn_sampler)

The neural_testbed takes care of the evaluation/logging within the TestbedProblem. This means that the experiment will automatically output data in the correct format. This makes it easy to compare results from different codebases/frameworks, so you can focus on agent design.

How do I get started?

If you are new to neural_testbed you can get started in our colab tutorial. This Jupyter notebook is hosted with a free cloud server, so you can start coding right away without installing anything on your machine. After this, you can follow the instructions below to get neural_testbed running on your local machine:

Installation

We have tested neural_testbed on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv neural_testbed
    source neural_testbed/bin/activate
    pip install --upgrade pip setuptools
  2. Install neural_testbed directly from github:

    git clone https://github.com/deepmind/neural_testbed.git
    cd neural_testbed
    pip install .
  3. Optional: run the tests by executing ./test.sh from the neural_testbed main directory.

Baseline agents

In addition to our testbed code, we release a collection of benchmark agents. These include the full sets of hyperparameter sweeps necessary to reproduce the paper's results, and can serve as a great starting point for new research. You can have a look at these implementations in the agents/factories/ folder.

We recommended you get started with our colab tutorial. After intallation you can also run an agent directly by executing the following command from the main directory of neural_testbed:

python -m neural_testbed.experiments.run --agent_name=mlp

By default, this will save the results for that agent to csv at /tmp/neural_testbed. You can control these options by flags in the run file. In particular, you can run the agent on the whole sweep of tasks in the Neural Testbed by specifying the flag --problem_id=SWEEP.

Citing

If you use neural_testbed in your work, please cite the accompanying paper:

@misc{osband2021evaluating,
      title={Evaluating Predictive Distributions: Does Bayesian Deep Learning Work?},
      author={Ian Osband and Zheng Wen and Seyed Mohammad Asghari and Vikranth Dwaracherla and Botao Hao and Morteza Ibrahimi and Dieterich Lawson and Xiuyuan Lu and Brendan O'Donoghue and Benjamin Van Roy},
      year={2021},
      eprint={2110.04629},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
DeepMind
DeepMind
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022