AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

Related tags

Deep LearningAdaShare
Overview

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020)

Introduction

alt text

AdaShare is a novel and differentiable approach for efficient multi-task learning that learns the feature sharing pattern to achieve the best recognition accuracy, while restricting the memory footprint as much as possible. Our main idea is to learn the sharing pattern through a task-specific policy that selectively chooses which layers to execute for a given task in the multi-task network. In other words, we aim to obtain a single network for multi-task learning that supports separate execution paths for different tasks.

Here is the link for our arxiv version.

Welcome to cite our work if you find it is helpful to your research.

@article{sun2020adashare,
  title={Adashare: Learning what to share for efficient deep multi-task learning},
  author={Sun, Ximeng and Panda, Rameswar and Feris, Rogerio and Saenko, Kate},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Experiment Environment

Our implementation is in Pytorch. We train and test our model on 1 Tesla V100 GPU for NYU v2 2-task, CityScapes 2-task and use 2 Tesla V100 GPUs for NYU v2 3-task and Tiny-Taskonomy 5-task.

We use python3.6 and please refer to this link to create a python3.6 conda environment.

Install the listed packages in the virual environment:

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install -c menpo opencv
conda install pillow
conda install -c conda-forge tqdm
conda install -c anaconda pyyaml
conda install scikit-learn
conda install -c anaconda scipy
pip install tensorboardX

Datasets

Please download the formatted datasets for NYU v2 here

The formatted CityScapes can be found here.

Download Tiny-Taskonomy as instructed by its GitHub.

The formatted DomainNet can be found here.

Remember to change the dataroot to your local dataset path in all yaml files in the ./yamls/.

Training

Policy Learning Phase

Please execute train.py for policy learning, using the command

python train.py --config <yaml_file_name> --gpus <gpu ids>

For example, python train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0.

Sample yaml files are under yamls/adashare

Note: use domainnet branch for experiments on DomainNet, i.e. python train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Retrain Phase

After Policy Learning Phase, we sample 8 different architectures and execute re-train.py for retraining.

python re-train.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

where we use different --exp_ids to specify different random seeds and generate different architectures. The best performance of all 8 runs is reported in the paper.

For example, python re-train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

Note: use domainnet branch for experiments on DomainNet, i.e. python re-train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Test/Inference

After Retraining Phase, execute test.py for get the quantitative results on the test set.

python test.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

For example, python test.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

We provide our trained checkpoints as follows:

  1. Please download our model in NYU v2 2-Task Learning
  2. Please donwload our model in CityScapes 2-Task Learning
  3. Please download our model in NYU v2 3-Task Learning

To use these provided checkpoints, please download them to ../experiments/checkpoints/ and uncompress there. Use the following command to test

python test.py --config yamls/adashare/nyu_v2_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/cityscapes_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/nyu_v2_3task_test.yml --gpus 0 --exp_ids 0

Test with our pre-trained checkpoints

We also provide some sample images to easily test our model for nyu v2 3 tasks.

Please download our model in NYU v2 3-Task Learning

Execute test_sample.py to test on sample images in ./nyu_v2_samples, using the command

python test_sample.py --config  yamls/adashare/nyu_v2_3task_test.yml --gpus 0

It will print the average quantitative results of sample images.

Note

If any link is invalid or any question, please email [email protected]

This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger πŸš€ Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Multimodal commodity image retrieval ε€šζ¨‘ζ€ε•†ε“ε›Ύεƒζ£€η΄’

Multimodal commodity image retrieval ε€šζ¨‘ζ€ε•†ε“ε›Ύεƒζ£€η΄’ Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022