Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Overview

Stochastic Image-to-Video Synthesis using cINNs

Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR2021.

teaser.mp4

Arxiv | Project Page | Supplemental | Pretrained Models | BibTeX

Michael Dorkenwald, Timo Milbich, Andreas Blattmann, Robin Rombach, Kosta Derpanis*, Björn Ommer*, CVPR 2021

tl;dr We present a framework for both stochastic and controlled image-to-video synthesis. We bridge the gap between the image and video domain using conditional invertible neural networks and account for the inherent ambiguity with a learned, dedicated scene dynamics representation.

teaser

For any questions, issues, or recommendations, please contact Michael at m.dorkenwald(at)gmail.com. If our project is helpful for your research, please consider citing.

Table of Content

  1. Requirements
  2. Running pretrained models
  3. Data preparation
  4. Evaluation
    1. Synthesis quality
    2. Diversity
  5. Training
    1. Stage1: Video-to-Video synthesis
    2. Stage2: cINN for Image-to-Video synthesis
  6. Shout-outs
  7. BibTeX

Requirements

A suitable conda environment named i2v can be created and activated with

conda env create -f environment.yaml
conda activate i2v

For this repository cuda verion 11.1 is used. To suppress the annoying warnings from kornia please run all python scripts with -W ignore.

Running pretrained models

One can test our method using the scripts below on images placed in assets/GT_samples after placing the pre-trained model weights for the corresponding datasets e.g. bair in the models folder like models/bair/.

python -W ignore generate_samples.py -dataset landscape -gpu <gpu_id> -seq_length <sequence_length>

teaser

Moreoever, one can also transfer an observed dynamic from a given video (first row) to an arbitrary starting frame using

python -W ignore generate_transfer.py -dataset landscape -gpu <gpu_id> 

teaser teaser

python -W ignore generate_samples.py -dataset bair -gpu <gpu_id> 

teaser

Our model can be extended to control specific factors e.g. the endpoint location of the robot arm. Note, to run this script you need to download the BAIR dataset.

python -W ignore visualize_endpoint.py -dataset bair -gpu <gpu_id> -data_path <path2data>
Sample 1 Sample 2

or look only on the last frame of the generated sequence, which is similar since all videos were conditioned on the same endpoint

Sample 1 Sample 2
python -W ignore generate_samples.py -dataset iPER -gpu <GPU_ID>

teaser

python -W ignore generate_samples.py -dataset DTDB -gpu <GPU_ID> -texture fire

teaser

python -W ignore generate_samples.py -dataset DTDB -gpu <GPU_ID> -texture vegetation

teaser

python -W ignore generate_samples.py -dataset DTDB -gpu <GPU_ID> -texture clouds

teaser

python -W ignore generate_samples.py -dataset DTDB -gpu <GPU_ID> -texture waterfall

teaser

Data preparation

BAIR

To download the dataset to a given target directory <TARGETDIR>, run the following command

sh data/bair/download_bair.sh <TARGETDIR>

In order to convert the tensorflow records file run the following command

python data/bair/convert_bair.py --data_dir <DATADIR> --output_dir <TARGETDIR>

traj_256_to_511 is used for validation and traj_0_to_255 for testing. The resulting folder structure should be the following

$bair/train/
├── traj_512_to_767
│   ├── 1
|   ├── ├── 0.png
|   ├── ├── 1.png
|   ├── ├── 2.png
|   ├── ├── ...
│   ├── 2
│   ├── ...
├── ...
$bair/eval/
├── traj_256_to_511
│   ├── 1
|   ├── ├── 0.png
|   ├── ├── 1.png
|   ├── ├── 2.png
|   ├── ├── ...
│   ├── 2
│   ├── ...
$bair/test/
├── traj_0_to_255
│   ├── 1
|   ├── ├── 0.png
|   ├── ├── 1.png
|   ├── ├── 2.png
|   ├── ├── ...
│   ├── 2
│   ├── ...

Please cite the corresponding paper if you use the data.

Landscape

Download the corresponding dataset from here using e.g. gdown. To use our provided data loader all images need to be renamed to frame0 to frameX to alleviate the problem of missing frames. Therefore the following script can be used

python data/landscape/rename_images.py --data_dir <DATADIR> 

In data/landscape we provide a list of videos that were used for training and testing. Please cite the corresponding paper if you use the data.

iPER

Download the dataset from here and run

python data/iPER/extract_iPER.py --raw_dir <DATADIR> --processed_dir <TARGETDIR>

to extract the frames. In data/iPER we provide a list of videos that were used for train, eval, and test. Please cite the corresponding paper if you use the data.

Dynamic Textures

Download the corrsponding dataset from here and unzip it. Please cite the corresponding paper if you use the data. The original mp4 files from DTDB can be downloaded from here.

Evaluation

After storing the data as described, the evaluation script for each dataset can be used.

Synthesis quality

We use the following metrics to measure synthesis quality: LPIPS, FID, FVD, DTFVD. The latter was introduced in this work and is a specific FVD for dynamic textures. Therefore, please download the weights of the I3D model from here and place it in the models folder like /models/DTI3D/. For more details on DTFVD please see Sec. C3 in supplemental. To compute the mentioned metrics for a given dataset please run

python -W ignore eval_synthesis_quality.py -gpu <gpu_id> -dataset <dataset> -data_path <path2data> -FVD True -LPIPS True -FID True -DTFVD True

for DTDB please specify the dynamic texture you want to evalute e.g. fire

python -W ignore eval_synthesis_quality.py -gpu <gpu_id> -dataset DTDB -data_path <path2data> -texture fire -FVD True -LPIPS True -FID True -DTFVD True

Please cite our work if you use DTFVD in your work. If you place the chkpts outside this repository please specify the location using the argument -chkpt <path_to_chkpt>.

Diversity

We measure diversity by comparing different realizations of an example using a pretrained VGG, I3D and DTI3D backbone. The last two consider the temporal property of the data whereas for the VGG diversity score compared images framewise. To evaluate diversity for a given dataset please run

python -W ignore eval_diversity.py -gpu <gpu_id> -dataset <dataset> -data_path <path2data> -DTI3D True -VGG True -I3D True -seq_length <length>

for DTDB please specify the dynamic texture you want to evalute e.g. fire

python -W ignore eval_diversity.py -gpu <gpu_id> -dataset DTDB -data_path <path2data> -texture fire -DTI3D True -VGG True -I3D True 

Training

The training of our models is divided into two consecutive stages. In stage 1, we learn an information preserving video latent representation using a conditional generative model which reconstructs the given input video as best as possible. After that, we learn a conditional INN to map the video latent representation to a residual space depicting the scene dynamics conditioned on the starting frame and additional control factors. During inference, we now can sample new scene dynamics from the residual distribution and synthesize novel videos due to the bijective nature of the cINN. For more details please check out our paper.

For logging our runs we used and recommend wandb. Please create a free account and add your username to the config. If you don't want to use it, the metrics are also logged in a csv file and samples are written out in the specified chkpt folder. Therefore, please set logging mode to offline. For logging (PyTorch) FVD please download the weights of a PyTorch I3D from here and place it in models like /models/PI3D/. For logging DTFVD please download the weights of the DTI3D model from here and place it in the models folder like /models/DTI3D/. Depending on the dataset please specify either FVD or DTFVD under FVD in the config. For each provided pretrained model we left the corresponding config file in the corresponding folder. If you want to run our model on a dataset we did not provide please create a new config. Before you start a run please specify the data path, save path, and the name of the run in the config.

Stage 1: Video-to-Video synthesis

To train the conditional generative model for video-to-video synthesis run the following command

python -W ignore -m stage1_VAE.main -gpu <gpu_id> -cf stage1_VAE/configs/<config>

Stage 2: cINN for Image-to-Video synthesis

Before we can train the cINN, we need to train an AE to obtain an encoder to embed the starting frame for the cINN. You can use the on provided or train your own by running

python -W ignore -m stage2_cINN.AE.main -gpu <gpu_id> -cf stage2_cINN/AE/configs/<config>

To train the cINN, we need to specify the location of the trained encoder as well as the first stage model in the config. After that, training of the cINN can be started by

python -W ignore -m stage2_cINN.main -gpu <gpu_id> -cf stage2_cINN/configs/<config>

To reproduce the controlled video synthesis experiment, one can specify the control True in the bair_config.yaml to additional condition the cINN on the endpoint location.

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

  • The decoder architecture is inspired by SPADE
  • The great work and code of Stochastic Latent Residual Video Prediction SRVP
  • The 3D encoder and discriminator are based on 3D-Resnet and spatial discriminator is adapted from PatchGAN
  • The metrics which were used LPIPS PyTorch FID FVD

BibTeX

@misc{dorkenwald2021stochastic,
      title={Stochastic Image-to-Video Synthesis using cINNs}, 
      author={Michael Dorkenwald and Timo Milbich and Andreas Blattmann and Robin Rombach and Konstantinos G. Derpanis and Björn Ommer},
      year={2021},
      eprint={2105.04551},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022