Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper]

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan

This is the official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset. The code is built based on the original implementation of DPI-Net (https://github.com/YunzhuLi/DPI-Net).

Contact: [email protected] (Fish Tung)

Papers of GNS and DPI-Net:

** Learning to Simulate Complex Physics with Graph Networks ** [paper]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

** Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids ** [website] [paper]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba **

Demo

Rollout from our learned model (left is ground truth, right is prediction)

Dominoes Roll Contain Drape

Installation

Clone this repo:

git clone https://github.com/htung0101/DPI-Net-p.git
cd DPI-Net-p
git submodule update --init --recursive

Install Dependencies if using Conda

For Conda users, we provide an installation script:

bash ./scripts/conda_deps.sh
pip install pyyaml

To use tensorboard for training visualization

pip install tensorboardX
pip install tensorboard

Install binvox

We use binvox to transform object mesh into particles. To use binvox, please download binvox from https://www.patrickmin.com/binvox/, put it under ./bin, and include it in your path with

export PATH=$PATH:$PWD/bin.

You might need to do chmod 777 binvox in order to execute the file.

Setup your own data path

open paths.yaml and write your own path there. You can set up different paths for different machines under different user name.

Preprocessing the Physion dataset

1) We need to convert the mesh scenes into particle scenes. This line will generate a separate folder (dpi_data_dir specified in paths.yaml) that holds data for the particle-based models

bash run_preprocessing_tdw_cheap.sh [SCENARIO_NAME] [MODE]

e.g., bash run_preprocessing_tdw_cheap.sh Dominoes train SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop, or Drape. MODE can be either train or test

You can visualize the original videos and the generated particle scenes with

python preprocessing_tdw_cheap.py --scenario Dominones --mode "train" --visualization 1

There will be videos generated under the folder vispy.

2) Then, try generate a train.txt and valid.txt files that indicates the trials you want to use for training and validaiton.

python create_train_valid.py

You can also design your specific split. Just put the trial names into one txt file.

3) For evalution on the red-hits-yellow prediciton, we can get the binary red-hits-yellow label txt file from the test dataset with

bash run_get_label_txt.sh [SCENARIO_NAME] test

This will generate a folder called labels under your output_folder dpi_data_dir. In the folder, each scenario will have a corresponding label file called [SCENARIO_NAME].txt

Training

Ok, now we are ready to start training the models.You can use the following command to train from scratch.

  • Train GNS
    bash scripts/train_gns.sh [SCENARIO_NAME] [GPU_ID]

SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop and Drape.

  • Train DPI
    bash scripts/train_dpi.sh [SCENARIO_NAME] [GPU_ID]

Our implementation is different from the original DPI paper in 2 ways: (1) our model takes as inputs relative positions as opposed to absolute positions, (2) our model is trained with injected noise. These two features are suggested in the GNS paper, and we found them to be critcial for the models to generalize well to unseen scenes.

  • Train with multiple scenarios

You can also train with more than one scenarios by adding different scenario to the argument dataf

 python train.py  --env TDWdominoes --model_name GNS --log_per_iter 1000 --training_fpt 3 --ckp_per_iter 5000 --floor_cheat 1  --dataf "Dominoes, Collide, Support, Link, Roll, Drop, Contain, Drape" --outf "all_gns"
  • Visualize your training progress

Models and model logs are saved under [out_dir]/dump/dump_TDWdominoes. You can visualize the training progress using tensorboard

tensorboard --logdir MODEL_NAME/log

Evaluation

  • Evaluate GNS
bash scripts/eval_gns.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can get the prediction txt file under eval/eval_TDWdominoes/[MODEL_NAME], e.g., test-Drape.txt, which contains results of testing the model on the Drape scenario. You can visualize the results with additional argument --vis 1.

  • Evaluate GNS-Ransac
bash scripts/eval_gns_ransac.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate DPI
bash scripts/eval_dpi.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate Models trained on multiple scenario Here we provide some example of evaluating on arbitray models trained on all scenarios.
bash eval_all_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_dpi.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_gns_ransac.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Visualize trained Models Here we provide an example of visualizing the rollout results from trained arbitray models.
bash vis_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can find the visualization under eval/eval_TDWdominoes/[MODEL_NAME]/test-[Scenario]. We should see a gif for the original RGB videos, and another gif for the side-by-side comparison of gt particle scenes and the predicted particle scenes.

Citing Physion

If you find this codebase useful in your research, please consider citing:

@inproceedings{bear2021physion,
    Title={Physion: Evaluating Physical Prediction from Vision in Humans and Machines},
    author= {Daniel M. Bear and
           Elias Wang and
           Damian Mrowca and
           Felix J. Binder and
           Hsiao{-}Yu Fish Tung and
           R. T. Pramod and
           Cameron Holdaway and
           Sirui Tao and
           Kevin A. Smith and
           Fan{-}Yun Sun and
           Li Fei{-}Fei and
           Nancy Kanwisher and
           Joshua B. Tenenbaum and
           Daniel L. K. Yamins and
           Judith E. Fan},
    url = {https://arxiv.org/abs/2106.08261},
    archivePrefix = {arXiv},
    eprint = {2106.08261},
    Year = {2021}
}
Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
๐Ÿ› ๏ธ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovรกsz hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovรกsz hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 ๋ณธ repo ๋Š” mAy-I Inc. ํŒ€์œผ๋กœ ์ฐธ๊ฐ€ํ•œ 2021 ์ธ๊ณต์ง€๋Šฅ ์˜จ๋ผ์ธ ๊ฒฝ์ง„๋Œ€ํšŒ ์ค‘ [์ด๋ฏธ์ง€] ์šด์ „ ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ์šด์ „์ž ๋ถ€์ฃผ์˜ ํ–‰๋™ ๊ฒ€์ถœ ๋ชจ๋ธ] ํƒœ์Šคํฌ ์ˆ˜ํ–‰์„ ์œ„ํ•œ ๋ ˆํฌ์ง€ํ† ๋ฆฌ์ž…๋‹ˆ๋‹ค. mAy-I ๋Š” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€๊ฐ€ ์ฃผ์ตœํ•˜

Junhyuk Park 9 Dec 01, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022