A Python module for parallel optimization of expensive black-box functions

Overview

blackbox: A Python module for parallel optimization of expensive black-box functions

What is this?

A minimalistic and easy-to-use Python module that efficiently searches for a global minimum of an expensive black-box function (e.g. optimal hyperparameters of simulation, neural network or anything that takes significant time to run). User needs to provide a function, a search domain (ranges of each input parameter) and a total number of function calls available. A code scales well on multicore CPUs and clusters: all function calls are divided into batches and each batch is evaluated in parallel.

A mathematical method behind the code is described in this arXiv note (there were few updates to the method recently): https://arxiv.org/pdf/1605.00998.pdf

Don't forget to cite this note if you are using method/code.

Demo

(a) - demo function (unknown to a method).

(b) - running a procedure using 15 evaluations.

(c) - running a procedure using 30 evaluations.

Installation

pip3 install black-box

Objective function

Simply needs to be wrapped into a Python function.

def fun(par):
    ...
    return output

par is a vector of input parameters (a Python list), output is a scalar value to be minimized.

Running the procedure

import black_box as bb


def fun(par):
    return par[0]**2 + par[1]**2  # dummy example


best_params = bb.search_min(f = fun,  # given function
                            domain = [  # ranges of each parameter
                                [-10., 10.],
                                [-10., 10.]
                                ],
                            budget = 40,  # total number of function calls available
                            batch = 4,  # number of calls that will be evaluated in parallel
                            resfile = 'output.csv')  # text file where results will be saved

Important:

  • All function calls are divided into batches and each batch is evaluated in parallel. Total number of batches is budget/batch. The value of batch should correspond to the number of available computational units.
  • An optional parameter executor = ... should be specified within bb.search_min() in case when custom parallel engine is used (ipyparallel, dask.distributed, pathos etc). executor should be an object that has a map method.

Intermediate results

In addition to search_min() returning list of optimal parameters, all trials are sorted by function value (best ones at the top) and saved in a text file with the following structure:

Parameter #1 Parameter #2 ... Parameter #n Function value
+1.6355e+01 -4.7364e+03 ... +6.4012e+00 +1.1937e-04
... ... ... ... ...

Author

Paul Knysh ([email protected])

Feel free to email me if you have any questions or comments.

Owner
Paul Knysh
Paul Knysh
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022