Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Overview

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021)

스크린샷 2021-08-21 오후 3 30 22

Dataset License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

[Project site] [Arxiv] [Download Dataset] [Video]

This is an official repository of "Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination", which is accepted as a poster in ICCV 2021.

This repository provides

  1. Preprocessing code of "Large Scale Multi Illuminant (LSMI) Dataset"
  2. Code of Pixel-level illumination inference U-Net
  3. Pre-trained model parameter for testing U-Net

Requirements

Our running environment is as follows:

  • Python version 3.8.3
  • Pytorch version 1.7.0
  • CUDA version 11.2

We provide a docker image, which supports all extra requirements (ex. dcraw,rawpy,tensorboard...), including specified version of python, pytorch, CUDA above.

You can download the docker image here.

The following instructions are assumed to run in a docker container that uses the docker image we provided.

Getting Started

Clone this repo

In the docker container, clone this repository first.

git clone https://github.com/DY112/LSMI-dataset.git

Download the LSMI dataset

You should first download the LSMI dataset from here.

The dataset is composed of 3 sub-folers named "galaxy", "nikon", "sony".

Folders named by each camera include several scenes, and each scene folder contains full-resolution RAW files and JPG files that is converted to sRGB color space.

Move all three folders to the root of cloned repository.

Preprocess the LSMI dataset

  1. Convert raw images to tiff files

    To convert original 1-channel bayer-pattern images to 3-channel RGB tiff images, run following code:

    python 0_cvt2tiff.py

    You should modify SOURCE and EXT variables properly.

    The converted tiff files are generated at the same location as the source file.

  2. Make mixture map

    python 1_make_mixture_map.py

    Change the CAMERA variable properly to the target directory you want.

    .npy tpye mixture map data will be generated at each scene's directory.

  3. Crop

    python 2_preprocess_data.py

    The image and the mixture map are resized as a square with a length of the SIZE variable inside the code, and the ground-truth image is also generated.

    We set the size to 256 to test the U-Net, and 512 for train the U-Net.

    Here, to test the pre-trained U-Net, set size to 256.

    The new dataset is created in a folder with the name of the CAMERA_SIZE. (Ex. galaxy_256)

Use U-Net for pixel-level AWB

You can download pre-trained model parameter here.

Pre-trained model is trained on 512x512 data with random crop & random pixel level relighting augmentation method.

Locate downloaded models folder into SVWB_Unet.

  • Test U-Net

    cd SVWB_Unet
    sh test.sh
  • Train U-Net

    cd SVWB_Unet
    sh train.sh
Owner
DongYoung Kim
Research Assistant of CIPLAB
DongYoung Kim
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022