Huawei Hackathon 2021 - Sweden (Stockholm)

Overview

huawei-hackathon-2021

Contributors

banner

Challenge

Requirements:

  • python=3.8.10
  • Standard libraries (no importing)

Important factors:

Data dependency between tasks for a Directed Acyclic Graph (DAG).

Task waits until parent tasks finished and data generated by parent reaches current task.

Communication time: The time which takes to send the parents’ data to their children, if they are located on different processing nodes; otherwise it can be assumed negligible. As a result, we prefer to assign communicating tasks on the same processing node.

Assign tasks on the same processing node where possible; if not, make data transfers from parent -> children as fast as possible.

Affinity: It refers to the affinity of a task to its previous instances running on the same processing node that can reduce overhead to initialize the task, such as a lower Instruction Cache Miss. Ideally the task is better to run on the same processing node where its previous instance was recently run.

Reuse processing nodes where possible. I.e. run children tasks on parent node.

Load Balancing of processing nodes: The CPU utilization of processing nodes should be balanced and uniformed.

Self explanitory.

Assumptions

  1. If communicating tasks assigned to the same processing node, the communication time between them is negligible, i.e., equal to 0.

    Using same node reduces communication time to 0.

  2. If the previous instance of the same task is recently assigned to the same processing node, the estimated execution time of the current instance of the task reduces by 10%. For example, if T0 is assigned to PN1, the execution time of the second instance of T0 (denoted by T0’) on PN1 is 9µs, rather than 10µs.

    Using same node reduces processing time by 10%. PN1 = Processing Node 1. T0 = Task 0.

  3. "Recently assigned" can be translated to:
    • If the previous instance of the current task is among the last Χ tasks run on the PN.
    • For this purpose we need to keep, a history of the X recent tasks which run on each PN.

      Log the tasks tracked?

  4. A DAG’s deadline is relative to its release time which denoted by di . For example, if the deadline of a DAG is 3 and the release time of its ith instance is 12, it should be completed before 15.
  5. All time units are in microseconds.
  6. The execution of tasks are non-preemptive, in the sense that a task that starts executing on a processor will not be interrupted by other tasks until its execution is completed.

    Tasks cannot run concurrently on the same processor.

Problem Formulation

Consider a real-time app including n DAGs (DAG1, DAG2, ... DAGn) each of which are periodically released with a period Pk . Instances of each DAG is released over the course of the running application. The ith instance of the kth DAG is denoted by Dk(i). The application is run on x homogenous processing nodes (PN1, PN2, ... PNx). The algorithm should find a solution on how to assign the tasks of DAGs to the PNs so that all DAGs deadlines are respected and the makespan of the given application is minimized. Makespan: The time where all instances of DAGs are completed

Questions:

Propose an algorithm to solve the considered problem to maximize the utility function including both the total application Makespan and the standard deviation of the PN utilizations (i.e., how well-uniform is the assignment) such that both task dependency constraints and DAGs deadlines are met.

Utility Function = 1 / (10 * Normalized(Makespan) + STD(PN utilizations))
Normalized(Makespan) = Makespan / Application_worst_case_completion_time
Application_worst_case_completion_time = SUM(execution_times, DAG_communication_times)
Normalized(Makespan) and STD(PN utilizations) are both values [0..1] Algorithm should specify the assignment of tasks to PNs that maximize utility function. Algorithm should specify the order the tasks are scheduled and execution order of tasks for each PN.

I/O

Input

Scheduler input: 12 test cases consisting of a JSON file that includes:

  • A set of independent DAGs
  • The deadlines for the DAGs
  • Number of instances of each DAG
  • Period (Pk) of the DAGs
  • List of tasks for each DAG
  • Execution times for each DAG
  • Communication (inter-task) times for each DAG __ --> Number of cores mentioned in each test case <--__

Output

A CSV file including:

  • The PN_id of which each task was assigned to (0, 1, ... x)
  • Order of execution of the tasks in their assigned PN
  • Start and finish time of the task
  • Applcation markspan
  • The STD of the clusters' utilization (PN utilization?)
  • Value of the utility function
  • The execution time of the scheduler on our machine.

image

Note for Python coders: If you code in Python, you need to write your own printer function to create the csv files in the specified format.

Owner
Drake Axelrod
Student at University of Göteborg studying Software Engineering & Management.
Drake Axelrod
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023