Tech Resources for Academic Communities

Overview

Tech Resources for Academic Communities

The content and the code in this repo are intended for computer science instruction as a collaboration with Microsoft developer advocates and Faculty / Students under the MIT license. Please check back regularly for updated versions.

Source: https://github.com/microsoft/AcademicContent

This repo provides technical resources to help students and faculty learn about Azure and teach others. The content covers cross-platform scenarios in AI and machine learning, data science, web development, mobile app dev, internet of things, and DevOps. It also includes interesting tech talks and engaging, fun tech challenges that Microsoft leads at student hackathons and Imagine Cup.

Important: We are migrating to Microsoft Learn | If you can't find what you're looking for in this repo, check out the labs on Microsoft Learn too. Many of these labs have their own built-in Azure sandbox making it easier for faculty and students to learn without requiring an Azure Subscription.

Students can get free Azure credits to explore these resources here:

  • Azure for Students | $100 in Azure for 12 months with free tier of services - no credit card required with academic verification
  • Azure for Students Starter | use select Azure products like App Services for free - no credit card required with academic verification
  • Azure Free Account | $200 in Azure for one month with free tier of services - requires a credit card and probably the best fit for faculty evaluating Azure for course instruction unless your organization has a grant or enterprise agreement.

Your feedback is appreciated - please fork this repo and contribute!

To report any issues, please log a GitHub issue. Include the content section, module number, and title, along with any error messages and screenshots.

Learn by doing with our hands-on labs

Check out our hands-on labs that can be used on your own or in the classroom. They also make for fun, easy-to-run workshops!

Lab Categories Description
AI and Machine Learning Build bots and apps backed by AI and ML using Azure and Azure Cognitive Services.
Azure Services Deploy serverless code with Azure Functions, run Docker containers, use Azure to build Blockchain networks and more.
Big Data and Analytics Spin up Apache Spark Clusters, Use Hadoop to extract information from big datasets or use Power BI to explore and visualize data.
Deep Learning These labs build on each other to introduce tools and libraries for AI. They're labeled 200-400 level to indicate level of technical detail.
Internet-of-Things Use Azure to collect and stream IoT data securely and in real time.
Web Development Quickly create scalable web apps using Node, PHP, MySQL on easy-to-use tools like Visual Studio Code and GitHub.
Web Development for Beginners, 24 lessons A curriculum with 24 lessons, assignments and five projects to build. Covers HTML, CSS and JavaScript. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
Machine Learning for Beginners, 25 lessons A curriculum with 25 lessons with assignments covering classic Machine Learning primarily using Scikit-learn. Covers Regression, Classification, Clustering, NLP, Time Series Forecasting, and Reinforcement Learning, with two Applied ML lessons. Also includes 50 Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
IoT for Beginners, 24 lessons A curriculum with 24 lessons with assignments all about the Internet of Things. The projects cover the journey of food from farm to table. This includes farming, logistics, manufacturing, retail and consumer - all popular industry areas for IoT devices. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning

Host great events and hacks

Want to host an event at your school? We can help with the resources below!

Resource
Events and Hacks These are keynotes and hack workshops that Microsoft has produced for student events. Feel free to use. Most slides also contain suggested demos and talk tracks. There's also pre-packaged coding challenge to help students explore machine learning.
Tech Talks One-off presentations on emerging or innovative tech topics with speakers notes and demos.

Other available academic resources

We also have other great educator content to help you use Azure in the classroom.

Resource
Scripts Scripts and templates built in PowerShell or BASH to help set up your classroom environment.
Azure Guides Discover what Azure technologies apply to different teaching areas.
Course Content Learning modules to complement existing course instruction. Includes presentations, speaker notes, and hands-on labs.

Attend our Reactor Workshops

We focus on developing high-quality content for all Cloud, Data Science, Machine Learning, and AI learners. Through workshops, tech talks, and hackathons hosted around the world, come learn and apply new skills to what you're interested in!

Resource
Reactor Workshops Content for our First Party Reactor Workshops can be found here.
Reactor Locations Find out schedules, learn more about each space, and see where we are opening a Reactor near you!

Content from other sources

Resource
Azure Architecture Center Cloud architecture guides, reference architectures, and example workloads for how to put the pieces of the cloud together
Microsoft AI School Content for students, developers and data scientists to get started and dive deep into the Microsoft AI platform and deep learning.
Microsoft Learn Hundreds of free online training by world-class experts to help you build your technical skills on the latest Microsoft technologies.
Technical Community Content Workshops from the community team.
Research case studies Case studies of faculty using Azure for Research collected by Microsoft Research. Submit your own Azure research stories here too!
Microsoft Research Data Sets Data sets shared by Microsoft Research for academic use.
Machine Learning Data Sets Data sets shared by Azure Machine Learning team to help explore machine learning.
MS MARCO Microsoft MAchine Reading COmprehension Dataset generated from real Bing user queries and search results.
IoT School Resources for learning about Azure IoT solutions, platform services and industry-leading edge technologies.
Azure IoT curriculum resources Hands on labs and content for students and educators to learn and teach the Internet of Things at schools, universities, coding clubs, community colleges and bootcamps
AI Labs Experience, learn and code the latest breakthrough AI innovations by Microsoft.
Channel9 Videos for developers from people building Microsoft products and services.

Structure of the docs part of this repository

This repository is designed to build a VuePress site that is hosted using GitHub Pages.

The content of this site lives in the docs folder. The main page is constructed from the README.md in that folder, and the side bar is made of the contents of the content folder.

Building the docs

To build these docs, you will need npm installed. Once you have this installed, install VuePress:

npm install vuepress

To build the docs, use the deploy.sh script. This script will build the docs, then push them to the gh-pages branch of a given fork of this project. You pass the GitHub user/org name to the script. This way you can test the build offline, then push to the parent as part of an automated script.

deploy.sh <org>

Contributing

We 💖 love 💖 contributions. In fact, we want students, faculty, researchers and life-long learners to contribute to this repo, either by adding links to existing content, or building content. Please read the contributing guide to learn more.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022