Tech Resources for Academic Communities

Overview

Tech Resources for Academic Communities

The content and the code in this repo are intended for computer science instruction as a collaboration with Microsoft developer advocates and Faculty / Students under the MIT license. Please check back regularly for updated versions.

Source: https://github.com/microsoft/AcademicContent

This repo provides technical resources to help students and faculty learn about Azure and teach others. The content covers cross-platform scenarios in AI and machine learning, data science, web development, mobile app dev, internet of things, and DevOps. It also includes interesting tech talks and engaging, fun tech challenges that Microsoft leads at student hackathons and Imagine Cup.

Important: We are migrating to Microsoft Learn | If you can't find what you're looking for in this repo, check out the labs on Microsoft Learn too. Many of these labs have their own built-in Azure sandbox making it easier for faculty and students to learn without requiring an Azure Subscription.

Students can get free Azure credits to explore these resources here:

  • Azure for Students | $100 in Azure for 12 months with free tier of services - no credit card required with academic verification
  • Azure for Students Starter | use select Azure products like App Services for free - no credit card required with academic verification
  • Azure Free Account | $200 in Azure for one month with free tier of services - requires a credit card and probably the best fit for faculty evaluating Azure for course instruction unless your organization has a grant or enterprise agreement.

Your feedback is appreciated - please fork this repo and contribute!

To report any issues, please log a GitHub issue. Include the content section, module number, and title, along with any error messages and screenshots.

Learn by doing with our hands-on labs

Check out our hands-on labs that can be used on your own or in the classroom. They also make for fun, easy-to-run workshops!

Lab Categories Description
AI and Machine Learning Build bots and apps backed by AI and ML using Azure and Azure Cognitive Services.
Azure Services Deploy serverless code with Azure Functions, run Docker containers, use Azure to build Blockchain networks and more.
Big Data and Analytics Spin up Apache Spark Clusters, Use Hadoop to extract information from big datasets or use Power BI to explore and visualize data.
Deep Learning These labs build on each other to introduce tools and libraries for AI. They're labeled 200-400 level to indicate level of technical detail.
Internet-of-Things Use Azure to collect and stream IoT data securely and in real time.
Web Development Quickly create scalable web apps using Node, PHP, MySQL on easy-to-use tools like Visual Studio Code and GitHub.
Web Development for Beginners, 24 lessons A curriculum with 24 lessons, assignments and five projects to build. Covers HTML, CSS and JavaScript. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
Machine Learning for Beginners, 25 lessons A curriculum with 25 lessons with assignments covering classic Machine Learning primarily using Scikit-learn. Covers Regression, Classification, Clustering, NLP, Time Series Forecasting, and Reinforcement Learning, with two Applied ML lessons. Also includes 50 Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
IoT for Beginners, 24 lessons A curriculum with 24 lessons with assignments all about the Internet of Things. The projects cover the journey of food from farm to table. This includes farming, logistics, manufacturing, retail and consumer - all popular industry areas for IoT devices. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning

Host great events and hacks

Want to host an event at your school? We can help with the resources below!

Resource
Events and Hacks These are keynotes and hack workshops that Microsoft has produced for student events. Feel free to use. Most slides also contain suggested demos and talk tracks. There's also pre-packaged coding challenge to help students explore machine learning.
Tech Talks One-off presentations on emerging or innovative tech topics with speakers notes and demos.

Other available academic resources

We also have other great educator content to help you use Azure in the classroom.

Resource
Scripts Scripts and templates built in PowerShell or BASH to help set up your classroom environment.
Azure Guides Discover what Azure technologies apply to different teaching areas.
Course Content Learning modules to complement existing course instruction. Includes presentations, speaker notes, and hands-on labs.

Attend our Reactor Workshops

We focus on developing high-quality content for all Cloud, Data Science, Machine Learning, and AI learners. Through workshops, tech talks, and hackathons hosted around the world, come learn and apply new skills to what you're interested in!

Resource
Reactor Workshops Content for our First Party Reactor Workshops can be found here.
Reactor Locations Find out schedules, learn more about each space, and see where we are opening a Reactor near you!

Content from other sources

Resource
Azure Architecture Center Cloud architecture guides, reference architectures, and example workloads for how to put the pieces of the cloud together
Microsoft AI School Content for students, developers and data scientists to get started and dive deep into the Microsoft AI platform and deep learning.
Microsoft Learn Hundreds of free online training by world-class experts to help you build your technical skills on the latest Microsoft technologies.
Technical Community Content Workshops from the community team.
Research case studies Case studies of faculty using Azure for Research collected by Microsoft Research. Submit your own Azure research stories here too!
Microsoft Research Data Sets Data sets shared by Microsoft Research for academic use.
Machine Learning Data Sets Data sets shared by Azure Machine Learning team to help explore machine learning.
MS MARCO Microsoft MAchine Reading COmprehension Dataset generated from real Bing user queries and search results.
IoT School Resources for learning about Azure IoT solutions, platform services and industry-leading edge technologies.
Azure IoT curriculum resources Hands on labs and content for students and educators to learn and teach the Internet of Things at schools, universities, coding clubs, community colleges and bootcamps
AI Labs Experience, learn and code the latest breakthrough AI innovations by Microsoft.
Channel9 Videos for developers from people building Microsoft products and services.

Structure of the docs part of this repository

This repository is designed to build a VuePress site that is hosted using GitHub Pages.

The content of this site lives in the docs folder. The main page is constructed from the README.md in that folder, and the side bar is made of the contents of the content folder.

Building the docs

To build these docs, you will need npm installed. Once you have this installed, install VuePress:

npm install vuepress

To build the docs, use the deploy.sh script. This script will build the docs, then push them to the gh-pages branch of a given fork of this project. You pass the GitHub user/org name to the script. This way you can test the build offline, then push to the parent as part of an automated script.

deploy.sh <org>

Contributing

We 💖 love 💖 contributions. In fact, we want students, faculty, researchers and life-long learners to contribute to this repo, either by adding links to existing content, or building content. Please read the contributing guide to learn more.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022