Code for the paper "Adversarial Generator-Encoder Networks"

Related tags

Deep Learninggan
Overview

This repository contains code for the paper

"Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky.

Pretrained models

This is how you can access the models used to generate figures in the paper.

  1. First install dev version of pytorch 0.2 and make sure you have jupyter notebook ready.

  2. Then download the models with the script:

bash download_pretrained.sh
  1. Run jupyter notebook and go through evaluate.ipynb.

Here is an example of samples and reconstructions for imagenet, celeba and cifar10 datasets generated with evaluate.ipynb.

Celeba

Samples Reconstructions

Cifar10

Samples Reconstructions

Tiny ImageNet

Samples Reconstructions

Training

Use age.py script to train a model. Here are the most important parameters:

  • --dataset: one of [celeba, cifar10, imagenet, svhn, mnist]
  • --dataroot: for datasets included in torchvision it is a directory where everything will be downloaded to; for imagenet, celeba datasets it is a path to a directory with folders train and val inside.
  • --image_size:
  • --save_dir: path to a folder, where checkpoints will be stored
  • --nz: dimensionality of latent space
  • -- batch_size: Batch size. Default 64.
  • --netG: .py file with generator definition. Searched in models directory
  • --netE: .py file with generator definition. Searched in models directory
  • --netG_chp: path to a generator checkpoint to load from
  • --netE_chp: path to an encoder checkpoint to load from
  • --nepoch: number of epoch to run
  • --start_epoch: epoch number to start from. Useful for finetuning.
  • --e_updates: Update plan for encoder. <num steps>;KL_fake:<weight>,KL_real:<weight>,match_z:<weight>,match_x:<weight>.
  • --g_updates: Update plan for generator. <num steps>;KL_fake:<weight>,match_z:<weight>,match_x:<weight>.

And misc arguments:

  • --workers: number of dataloader workers.
  • --ngf: controlles number of channels in generator
  • --ndf: controlles number of channels in encoder
  • --beta1: parameter for ADAM optimizer
  • --cpu: do not use GPU
  • --criterion: Parametric param or non-parametric nonparam way to compute KL. Parametric fits Gaussian into data, non-parametric is based on nearest neighbors. Default: param.
  • --KL: What KL to compute: qp or pq. Default is qp.
  • --noise: sphere for uniform on sphere or gaussian. Default sphere.
  • --match_z: loss to use as reconstruction loss in latent space. L1|L2|cos. Default cos.
  • --match_x: loss to use as reconstruction loss in data space. L1|L2|cos. Default L1.
  • --drop_lr: each drop_lr epochs a learning rate is dropped.
  • --save_every: controls how often intermediate results are stored. Default 50.
  • --manual_seed: random seed. Default 123.

Here is cmd you can start with:

Celeba

Let data_root to be a directory with two folders train, val, each with the images for corresponding split.

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --lr 0.0002 --nz 64 --batch_size 64 --netG dcgan64px --netE dcgan64px --nepoch 5 --drop_lr 5 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '3;KL_fake:1,match_z:1000,match_x:0'

It is beneficial to finetune the model with larger batch_size and stronger matching weight then:

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --start_epoch 5 --lr 0.0002 --nz 64 --batch_size 256 --netG dcgan64px --netE dcgan64px --nepoch 6 --drop_lr 5   --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:15' --g_updates '3;KL_fake:1,match_z:1000,match_x:0' --netE_chp  <save_dir>/netE_epoch_5.pth --netG_chp <save_dir>/netG_epoch_5.pth

Imagenet

python age.py --dataset imagenet --dataroot /path/to/imagenet_dir/ --save_dir <save_dir> --image_size 32 --save_dir ${pdir} --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 6 --drop_lr 3  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:2000,match_x:0' --workers 12

It can be beneficial to switch to 256 batch size after several epochs.

Cifar10

python age.py --dataset cifar10 --image_size 32 --save_dir <save_dir> --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 150 --drop_lr 40  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:1000,match_x:0'

Tested with python 2.7.

Implementation is based on pyTorch DCGAN code.

Citation

If you found this code useful please cite our paper

@inproceedings{DBLP:conf/aaai/UlyanovVL18,
  author    = {Dmitry Ulyanov and
               Andrea Vedaldi and
               Victor S. Lempitsky},
  title     = {It Takes (Only) Two: Adversarial Generator-Encoder Networks},
  booktitle = {{AAAI}},
  publisher = {{AAAI} Press},
  year      = {2018}
}
Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022