MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

Related tags

Deep LearningMetaTTE
Overview

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

This is the official TensorFlow implementation of MetaTTE in the manuscript.

Core Requirements

  • tensorflow~=2.3.0
  • numpy~=1.18.4
  • spektral~=0.6.1
  • pandas~=1.0.3
  • tqdm~=4.46.0
  • opencv-python~=4.3.0.36
  • matplotlib~=3.2.1
  • Pillow~=7.1.2
  • scipy~=1.4.1

All Dependencies can be installed using the following command:

pip install -r requirements.txt

Data Preparation

We here provide the datasets we adopted in this paper with Google Drive. After downloading the zip file, please extract all the files in data directory to the data folder in this project.

Download Link: Download

Configuration

We here list a sample of our config file, and leave the comments for explanation. \ (Please DO NOT include the comments in config files)

[General]
mode = train
# Specify the absoulute path of training, validation and testing files
train_files = ./data/chengdu/train.npy,./data/porto/train.npy
val_files = ./data/chengdu/val.npy,./data/porto/val.npy
test_files = ./data/chengdu/test.npy,./data/porto/test.npy
# Specify the batch size
batch_size = 32
# Specify the number for GPU
gpu = 7
# Specify the unique label for each experiment
prefix = tte_exp_64_gru

[Model]
# Specify the inner learning rate
learning_rate = 1e-2
# Specify the inner reduce rate of learning rate
lr_reduce = 0.5
# Specify the maximum iteration
epoch = 500000
# Specify the k shot
inner_k = 10
# Specify the outer step size
outer_step_size = 0.1
# Specify the model according to the class name
model = MSMTTEGRUAttModel
# Specify the dataset according to the class name
dataset = MyDifferDatasetWithEmbedding
# Specify the dataloader according to the class name
dataloader = MyDataLoaderWithEmbedding


# mean, standard deviation for latitudes, longitudes and travel time (Chengdu is before the comma while Porto is after the comma)
[Statistics]
lat_means = 30.651168872309235,41.16060653954797
lng_means = 104.06000501543934,-8.61946359614912
lat_stds = 0.039222931811691585,0.02315827641949562
lng_stds = 0.045337940910596744,0.029208656457667292
labels_means = 1088.0075248390972,691.2889878452086
labels_stds = 1315.707363003298,347.4765869900725

Model Training

Here are commands for training the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Eval baseline methods

Here are commands for testing the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Citation

We currently do not provide citations.

Owner
morningstarwang
Research assistant in ICT, P.h.D candidate in BUPT, Consultant in HBY, and Advisor in Path Academics.
morningstarwang
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023