An essential implementation of BYOL in PyTorch + PyTorch Lightning

Overview

Essential BYOL

A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Lightning.

Good stuff:

  • good performance (~67% linear eval accuracy on CIFAR100)
  • minimal code, easy to use and extend
  • multi-GPU / TPU and AMP support provided by PyTorch Lightning
  • ImageNet support (needs testing)
  • linear evaluation is performed during training without any additional forward pass
  • logging with Wandb

Performance

Linear Evaluation Accuracy

Here is the accuracy after training for 1000 epochs:

Dataset [email protected] [email protected]
CIFAR10 91.1% 99.8%
CIFAR100 67.0% 90.5%

Training and Validation Curves

CIFAR10

CIFAR100

Environment

conda create --name essential-byol python=3.8
conda activate essential-byol
conda install pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=XX.X -c pytorch
pip install pytorch-lightning==1.1.6 pytorch-lightning-bolts==0.3 wandb opencv-python

The code has been tested using these versions of the packages, but it will probably work with slightly different environments as well. When your run the code (see below for commands), PyTorch Lightning will probably throw a warning, advising you to install additional packages as gym, sklearn and matplotlib. They are not needed for this implementation to work, but you can install them to get rid of the warnings.

Datasets

Three datasets are supported:

  • CIFAR10
  • CIFAR100
  • ImageNet

For imagenet you need to pass the appropriate --data_dir, while for CIFAR you can just pass --download to download the dataset.

Commands

The repo comes with minimal model specific arguments, check main.py for info. We also support all the arguments of the PyTorch Lightning trainer. Default parameters are optimized for CIFAR100 but can also be used for CIFAR10.

Sample commands for running CIFAR100 on a single GPU setup:

python main.py \
    --gpus 1 \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

and multi-GPU setup:

python main.py \
    --gpus 2 \
    --distributed_backend ddp \
    --sync_batchnorm \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

Logging

Logging is performed with Wandb, please create an account, and follow the configuration steps in the terminal. You can pass your username using --entity. Training and validation stats are logged at every epoch. If you want to completely disable logging use --offline.

Contribute

Help is appreciated. Stuff that needs work:

  • test ImageNet performance
  • exclude bias and bn from LARS adaptation (see comments in the code)
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022