An essential implementation of BYOL in PyTorch + PyTorch Lightning

Overview

Essential BYOL

A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Lightning.

Good stuff:

  • good performance (~67% linear eval accuracy on CIFAR100)
  • minimal code, easy to use and extend
  • multi-GPU / TPU and AMP support provided by PyTorch Lightning
  • ImageNet support (needs testing)
  • linear evaluation is performed during training without any additional forward pass
  • logging with Wandb

Performance

Linear Evaluation Accuracy

Here is the accuracy after training for 1000 epochs:

Dataset [email protected] [email protected]
CIFAR10 91.1% 99.8%
CIFAR100 67.0% 90.5%

Training and Validation Curves

CIFAR10

CIFAR100

Environment

conda create --name essential-byol python=3.8
conda activate essential-byol
conda install pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=XX.X -c pytorch
pip install pytorch-lightning==1.1.6 pytorch-lightning-bolts==0.3 wandb opencv-python

The code has been tested using these versions of the packages, but it will probably work with slightly different environments as well. When your run the code (see below for commands), PyTorch Lightning will probably throw a warning, advising you to install additional packages as gym, sklearn and matplotlib. They are not needed for this implementation to work, but you can install them to get rid of the warnings.

Datasets

Three datasets are supported:

  • CIFAR10
  • CIFAR100
  • ImageNet

For imagenet you need to pass the appropriate --data_dir, while for CIFAR you can just pass --download to download the dataset.

Commands

The repo comes with minimal model specific arguments, check main.py for info. We also support all the arguments of the PyTorch Lightning trainer. Default parameters are optimized for CIFAR100 but can also be used for CIFAR10.

Sample commands for running CIFAR100 on a single GPU setup:

python main.py \
    --gpus 1 \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

and multi-GPU setup:

python main.py \
    --gpus 2 \
    --distributed_backend ddp \
    --sync_batchnorm \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

Logging

Logging is performed with Wandb, please create an account, and follow the configuration steps in the terminal. You can pass your username using --entity. Training and validation stats are logged at every epoch. If you want to completely disable logging use --offline.

Contribute

Help is appreciated. Stuff that needs work:

  • test ImageNet performance
  • exclude bias and bn from LARS adaptation (see comments in the code)
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021