A novel benchmark dataset for Monocular Layout prediction

Related tags

Deep LearningAutoLay
Overview

AutoLay

AutoLay: Benchmarking Monocular Layout Estimation

Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna

Abstract

In this paper, we tackle the problem of estimating the layout of a scene in bird’s eye view from monocular imagery. Specifically, we target amodal layout estimation, i.e., we estimate semantic labels for parts of the scene that do not even project to the visible regime of the image. While prior approaches to amodal layout estimation focused on coarse attributes of a scene(roads, sidewalks), we shift our attention to generate amodal estimation for fine-grained atrributes such as lanes, crosswalks, vehicles, etc. To this end, we introduce AutoLay, a new dataset for amodal layout estimation in bird’s eye view. AutoLay includes precise annotations for (amodal) layouts for 32 sequences from the KITTI dataset. In addition to fine-grained attributes such as lanes, sidewalks, and vehicles, we also provide detailed semantic annotations for 3D pointclouds. To foster reproducibility and further research in this nascent area, we open-source implementations for several baselines and current art. Further, we propose VideoLayout, a real-time neural net architecture that leverages temporal information from monocular video, to produce more accurate and consistent layouts. VideoLayout achieves state-of-the-art performance on AutoLay, while running in real-time (18 fps).

Dataset

We use 32 video sequences from the KITTI Raw dataset in AutoLay. We provide per-frame annotations in perspective, orthographic (bird’s eye view), as well as in 3D. Of the 32 annotated sequences, 17 sequences-containing 7414 images—are used for training. The other 15 sequences—comprising 4438 images—form the test set. This makes for nearly 12K annotated images, across a distance of 9.5 Km, and a variety of urban scenarios (residential, urban, road). The semantic classes considered in this dataset are road, sidewalk, vehicle, crosswalk, and lane. Each lane segment is provided a unique id, which we classify further. The lane class is further classified as ego-lane and other lane. We also have an other road class for road areas that do not fall under any of the above categories.

Sample dataset can be downloaded from here.

Benchmark

We provide a comprehensive benchmark of all the state-of-the-art methods for layout estimation on Autolay.

Results

Road Layout Estimation

Vehicle Layout Estimation

Lane Layout Estimation

Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022