This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"

Overview

Anomaly Toolbox

Description

Anomaly Toolbox Powered by GANs.

This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection" (https://arxiv.org/pdf/1906.11632.pdf).

The toolbox is meant to be used by the user to explore the performance of different GAN based architectures (in our work aka "experiments"). It also already provides some datasets to perform experiments on:

We provided the MNIST dataset because the original works extensively use it. On the other hand, we have also added the previously listed datasets both because used by a particular architecture and because they contribute a good benchmark for the models we have implemented.

All the architectures were tested on commonly used datasets such as MNIST, FashionMNIST, CIFAR-10, and KDD99. Some of them were even tested on more specific datasets, such as an X-Ray dataset that, however, we could not provide because of the impossibility of getting the data (privacy reasons).

The user can create their own dataset and use it to test the models.

Quick Start

  • First thing first, install the toolbox
pip install anomaly-toolbox

Then you can choose what experiment to run. For example:

  • Run the GANomaly experiment (i.e., the GANomaly architecture) with hyperparameters tuning enabled, the pre-defined hyperparameters file hparams.json and the MNIST dataset:
anomaly-box.py --experiment GANomalyExperiment --hps-path path/to/config/hparams.json --dataset 
MNIST 
  • Otherwise, you can run all the experiments using the pre-defined hyperparameters file hparams. json and the MNIST dataset:
anomaly-box.py --run-all --hps-path path/to/config/hparams.json --dataset MNIST 

For any other information, feel free to check the help:

anomaly-box.py --help

Contribution

This work is completely open source, and we would appreciate any contribution to the code. Any merge request to enhance, correct or expand the work is welcome.

Notes

The structures of the models inside the toolbox come from their respective papers. We have tried to respect them as much as possible. However, sometimes, due to implementation issues, we had to make some minor-ish changes. For this reason, you could find out that, in some cases, some features such as the number of layers, the size of kernels, or other such things may differ from the originals.

However, you don't have to worry. The heart and purpose of the architectures have remained intact.

Installation

pip install anomaly-toolbox

Usage

Options:
  --experiment [AnoGANExperiment|DeScarGANExperiment|EGBADExperiment|GANomalyExperiment]
                                  Experiment to run.
  --hps-path PATH                 When running an experiment, the path of the
                                  JSON file where all the hyperparameters are
                                  located.  [required]
  --tuning BOOLEAN                If you want to use hyperparameters tuning,
                                  use 'True' here. Default is False.
  --dataset TEXT                  The dataset to use. Can be a ready to use
                                  dataset, or a .py file that implements the
                                  AnomalyDetectionDataset interface
                                  [required]
  --run-all BOOLEAN               Run all the available experiments
  --help                          Show this message and exit.

Datasets and Custom Datasets

The provided datasets are:

and are automatically downloaded when the user makes a specific choice: ["MNIST", "CorruptedMNIST", "SurfaceCracks","MVTecAD"].

The user can also add its own specific dataset. To do this, the new dataset should inherit from the AnomalyDetectionDataset abstract class implementing its own configure method. For a more detailed guide, the user can refer to the README.md file inside the src/anomaly_toolbox/datasets folder. Moreover, in the examples folder, the user can find a dummy.py module with the basic skeleton code to implement a dataset.

References

Owner
Zuru Tech
Open source @ ZURU Tech
Zuru Tech
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022