This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"

Overview

Anomaly Toolbox

Description

Anomaly Toolbox Powered by GANs.

This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection" (https://arxiv.org/pdf/1906.11632.pdf).

The toolbox is meant to be used by the user to explore the performance of different GAN based architectures (in our work aka "experiments"). It also already provides some datasets to perform experiments on:

We provided the MNIST dataset because the original works extensively use it. On the other hand, we have also added the previously listed datasets both because used by a particular architecture and because they contribute a good benchmark for the models we have implemented.

All the architectures were tested on commonly used datasets such as MNIST, FashionMNIST, CIFAR-10, and KDD99. Some of them were even tested on more specific datasets, such as an X-Ray dataset that, however, we could not provide because of the impossibility of getting the data (privacy reasons).

The user can create their own dataset and use it to test the models.

Quick Start

  • First thing first, install the toolbox
pip install anomaly-toolbox

Then you can choose what experiment to run. For example:

  • Run the GANomaly experiment (i.e., the GANomaly architecture) with hyperparameters tuning enabled, the pre-defined hyperparameters file hparams.json and the MNIST dataset:
anomaly-box.py --experiment GANomalyExperiment --hps-path path/to/config/hparams.json --dataset 
MNIST 
  • Otherwise, you can run all the experiments using the pre-defined hyperparameters file hparams. json and the MNIST dataset:
anomaly-box.py --run-all --hps-path path/to/config/hparams.json --dataset MNIST 

For any other information, feel free to check the help:

anomaly-box.py --help

Contribution

This work is completely open source, and we would appreciate any contribution to the code. Any merge request to enhance, correct or expand the work is welcome.

Notes

The structures of the models inside the toolbox come from their respective papers. We have tried to respect them as much as possible. However, sometimes, due to implementation issues, we had to make some minor-ish changes. For this reason, you could find out that, in some cases, some features such as the number of layers, the size of kernels, or other such things may differ from the originals.

However, you don't have to worry. The heart and purpose of the architectures have remained intact.

Installation

pip install anomaly-toolbox

Usage

Options:
  --experiment [AnoGANExperiment|DeScarGANExperiment|EGBADExperiment|GANomalyExperiment]
                                  Experiment to run.
  --hps-path PATH                 When running an experiment, the path of the
                                  JSON file where all the hyperparameters are
                                  located.  [required]
  --tuning BOOLEAN                If you want to use hyperparameters tuning,
                                  use 'True' here. Default is False.
  --dataset TEXT                  The dataset to use. Can be a ready to use
                                  dataset, or a .py file that implements the
                                  AnomalyDetectionDataset interface
                                  [required]
  --run-all BOOLEAN               Run all the available experiments
  --help                          Show this message and exit.

Datasets and Custom Datasets

The provided datasets are:

and are automatically downloaded when the user makes a specific choice: ["MNIST", "CorruptedMNIST", "SurfaceCracks","MVTecAD"].

The user can also add its own specific dataset. To do this, the new dataset should inherit from the AnomalyDetectionDataset abstract class implementing its own configure method. For a more detailed guide, the user can refer to the README.md file inside the src/anomaly_toolbox/datasets folder. Moreover, in the examples folder, the user can find a dummy.py module with the basic skeleton code to implement a dataset.

References

Owner
Zuru Tech
Open source @ ZURU Tech
Zuru Tech
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022