🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

Overview

PAUSE: Positive and Annealed Unlabeled Sentence Embedding

Sentence embedding refers to a set of effective and versatile techniques for converting raw text into numerical vector representations that can be used in a wide range of natural language processing (NLP) applications. The majority of these techniques are either supervised or unsupervised. Compared to the unsupervised methods, the supervised ones make less assumptions about optimization objectives and usually achieve better results. However, the training requires a large amount of labeled sentence pairs, which is not available in many industrial scenarios. To that end, we propose a generic and end-to-end approach -- PAUSE (Positive and Annealed Unlabeled Sentence Embedding), capable of learning high-quality sentence embeddings from a partially labeled dataset, which effectively learns sentence embeddings from PU datasets by jointly optimizing the supervised and PU loss. The main highlights of PAUSE include:

  • good sentence embeddings can be learned from datasets with only a few positive labels;
  • it can be trained in an end-to-end fashion;
  • it can be directly applied to any dual-encoder model architecture;
  • it is extended to scenarios with an arbitrary number of classes;
  • polynomial annealing of the PU loss is proposed to stabilize the training;
  • our experiments (reproduction steps are illustrated below) show that PAUSE constantly outperforms baseline methods.

This repository contains Tensorflow implementation of PAUSE to reproduce the experimental results. Upon using this repo for your work, please cite:

@inproceedings{cao2021pause,
  title={PAUSE: Positive and Annealed Unlabeled Sentence Embedding},
  author={Cao, Lele and Larsson, Emil and von Ehrenheim, Vilhelm and Cavalcanti Rocha, Dhiana Deva and Martin, Anna and Horn, Sonja},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2021},
  url={https://arxiv.org/abs/2109.03155}
}

Prerequisites

Install virtual environment first to avoid breaking your native environment. If you use Anaconda, do

conda update conda
conda create --name py37-pause python=3.7
conda activate py37-pause

Then install the dependent libraries:

pip install -r requirements.txt

Unsupervised STS

Models are trained on a combination of the SNLI and Multi-Genre NLI datasets, which contain one million sentence pairs annotated with three labels: entailment, contradiction and neutral. The trained model is tested on the STS 2012-2016, STS benchmark, and SICK-Relatedness (SICK-R) datasets, which have labels between 0 and 5 indicating the semantic relatedness of sentence pairs.

Training

Example 1: train PAUSE-small using 5% labels for 10 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=10 \
  --model=small \
  --pos_sample_prec=5

Example 2: train PAUSE-base using 30% labels for 20 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=20 \
  --model=base \
  --pos_sample_prec=30

To check the parameters, run

python train_nli.py --help

which will print the usage as follows.

usage: train_nli.py [-h] [--model MODEL]
                    [--pretrained_weights PRETRAINED_WEIGHTS]
                    [--train_epochs TRAIN_EPOCHS] [--batch_size BATCH_SIZE]
                    [--train_steps_per_epoch TRAIN_STEPS_PER_EPOCH]
                    [--max_seq_len MAX_SEQ_LEN] [--prior PRIOR]
                    [--train_lr TRAIN_LR] [--pos_sample_prec POS_SAMPLE_PREC]
                    [--log_dir LOG_DIR] [--model_dir MODEL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         The tfhub link for the base embedding model
  --pretrained_weights PRETRAINED_WEIGHTS
                        The pretrained model if any
  --train_epochs TRAIN_EPOCHS
                        The max number of training epoch
  --batch_size BATCH_SIZE
                        Training mini-batch size
  --train_steps_per_epoch TRAIN_STEPS_PER_EPOCH
                        Step interval of evaluation during training
  --max_seq_len MAX_SEQ_LEN
                        The max number of tokens in the input
  --prior PRIOR         Expected ratio of positive samples
  --train_lr TRAIN_LR   The maximum learning rate
  --pos_sample_prec POS_SAMPLE_PREC
                        The percentage of sampled positive examples used in
                        training; should be one of 1, 10, 30, 50, 70
  --log_dir LOG_DIR     The path where the logs are stored
  --model_dir MODEL_DIR
                        The path where models and weights are stored

Testing

After the model is trained, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131724, where the directory name (20210517-131724) is the model ID. To test the model with that ID, run

python test_sts.py --model=20210517-131724

The test result on STS datasets will be printed on console and also saved in file ./artifacts/test/sts_20210517-131724.txt

Supervised STS

Train

You can continue to finetune a pertained model on supervised STSb. For example, assume we have trained a PAUSE model based on small BERT (say located at ./artifacts/model/20210517-131725), if we want to finetune the model on STSb for 2 epochs, we can run

python ft_stsb.py \
  --model=small \
  --train_epochs=2 \
  --pretrained_weights=./artifacts/model/20210517-131725

Note that it is important to match the model size (--model) with the pretrained model size (--pretrained_weights).

Testing

After the model is finetuned, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131726, where the directory name (20210517-131726) is the model ID. To test the model with that ID, run

python ft_stsb_test.py --model=20210517-131726

SentEval evaluation

To evaluate the PAUSE embeddings using SentEval (preferably using GPU), you need to download the data first:

cd ./data/downstream
./get_transfer_data.bash
cd ../..

Then, run the sent_eval.py script:

python sent_eval.py \
  --data_path=./data \
  --model=20210328-212801

where the --model parameter specifies the ID of the model you want to evaluate. By default, the model should exist in folder ./artifacts/model/embed. If you want to evaluate a trained model in our public GCS (gs://motherbrain-pause/model/...), please run (e.g. PAUSE-NLI-base-50%):

python sent_eval.py \
  --data_path=./data \
  --model_location=gcs \
  --model=20210329-065047

We provide the following models for demonstration purposes:

Model Model ID
PAUSE-NLI-base-100% 20210414-162525
PAUSE-NLI-base-70% 20210328-212801
PAUSE-NLI-base-50% 20210329-065047
PAUSE-NLI-base-30% 20210329-133137
PAUSE-NLI-base-10% 20210329-180000
PAUSE-NLI-base-5% 20210329-205354
PAUSE-NLI-base-1% 20210329-195024
You might also like...
Code for
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Releases(1.0)
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022