Language-Agnostic SEntence Representations

Related tags

Text Data & NLPLASER
Overview

LASER Language-Agnostic SEntence Representations

LASER is a library to calculate and use multilingual sentence embeddings.

NEWS

  • 2019/11/08 CCMatrix is available: Mining billions of high-quality parallel sentences on the WEB [8]
  • 2019/07/31 Gilles Bodard and Jérémy Rapin provided a Docker environment to use LASER
  • 2019/07/11 WikiMatrix is available: bitext extraction for 1620 language pairs in WikiPedia [7]
  • 2019/03/18 switch to BSD license
  • 2019/02/13 The code to perform bitext mining is now available

CURRENT VERSION:

  • We now provide an encoder which was trained on 93 languages, written in 23 different alphabets [6]. This includes all European languages, many Asian and Indian languages, Arabic, Persian, Hebrew, ..., as well as various minority languages and dialects.
  • We provide a test set for more than 100 languages based on the Tatoeba corpus.
  • Switch to PyTorch 1.0

All these languages are encoded by the same BiLSTM encoder, and there is no need to specify the input language (but tokenization is language specific). According to our experience, the sentence encoder also supports code-switching, i.e. the same sentences can contain words in several different languages.

We have also some evidence that the encoder can generalizes to other languages which have not been seen during training, but which are in a language family which is covered by other languages.

A detailed description how the multilingual sentence embeddings are trained can be found in [6], together with an extensive experimental evaluation.

Dependencies

  • Python 3.6
  • PyTorch 1.0
  • NumPy, tested with 1.15.4
  • Cython, needed by Python wrapper of FastBPE, tested with 0.29.6
  • Faiss, for fast similarity search and bitext mining
  • transliterate 1.10.2, only used for Greek (pip install transliterate)
  • jieba 0.39, Chinese segmenter (pip install jieba)
  • mecab 0.996, Japanese segmenter
  • tokenization from the Moses encoder (installed automatically)
  • FastBPE, fast C++ implementation of byte-pair encoding (installed automatically)

Installation

  • set the environment variable 'LASER' to the root of the installation, e.g. export LASER="${HOME}/projects/laser"
  • download encoders from Amazon s3 by bash ./install_models.sh
  • download third party software by bash ./install_external_tools.sh
  • download the data used in the example tasks (see description for each task)

Applications

We showcase several applications of multilingual sentence embeddings with code to reproduce our results (in the directory "tasks").

For all tasks, we use exactly the same multilingual encoder, without any task specific optimization or fine-tuning.

License

LASER is BSD-licensed, as found in the LICENSE file in the root directory of this source tree.

Supported languages

Our model was trained on the following languages:

Afrikaans, Albanian, Amharic, Arabic, Armenian, Aymara, Azerbaijani, Basque, Belarusian, Bengali, Berber languages, Bosnian, Breton, Bulgarian, Burmese, Catalan, Central/Kadazan Dusun, Central Khmer, Chavacano, Chinese, Coastal Kadazan, Cornish, Croatian, Czech, Danish, Dutch, Eastern Mari, English, Esperanto, Estonian, Finnish, French, Galician, Georgian, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Icelandic, Ido, Indonesian, Interlingua, Interlingue, Irish, Italian, Japanese, Kabyle, Kazakh, Korean, Kurdish, Latvian, Latin, Lingua Franca Nova, Lithuanian, Low German/Saxon, Macedonian, Malagasy, Malay, Malayalam, Maldivian (Divehi), Marathi, Norwegian (Bokmål), Occitan, Persian (Farsi), Polish, Portuguese, Romanian, Russian, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Swahili, Swedish, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Uighur, Ukrainian, Urdu, Uzbek, Vietnamese, Wu Chinese and Yue Chinese.

We have also observed that the model seems to generalize well to other (minority) languages or dialects, e.g.

Asturian, Egyptian Arabic, Faroese, Kashubian, North Moluccan Malay, Nynorsk Norwegian, Piedmontese, Sorbian, Swabian, Swiss German or Western Frisian.

References

[1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017

[2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018.

[3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018

[4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018.

[5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018.

[6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018.

[7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019.

[8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB

Owner
Facebook Research
Facebook Research
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022