A library for finding knowledge neurons in pretrained transformer models.

Overview

knowledge-neurons

An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the technique to autoregressive models, as well as MLMs.

The Huggingface Transformers library is used as the backend, so any model you want to probe must be implemented there.

Currently integrated models:

BERT_MODELS = ["bert-base-uncased", "bert-base-multilingual-uncased"]
GPT2_MODELS = ["gpt2"]
GPT_NEO_MODELS = [
    "EleutherAI/gpt-neo-125M",
    "EleutherAI/gpt-neo-1.3B",
    "EleutherAI/gpt-neo-2.7B",
]

The technique from Dai et al. has been used to locate knowledge neurons in the huggingface bert-base-uncased model for all the head/relation/tail entities in the PARAREL dataset. Both the neurons, and more detailed results of the experiment are published at bert_base_uncased_neurons/*.json and can be replicated by running pararel_evaluate.py. More details in the Evaluations on the PARAREL dataset section.

Setup

Either clone the github, and run scripts from there:

git clone knowledge-neurons
cd knowledge-neurons

Or install as a pip package:

pip install knowledge-neurons

Usage & Examples

An example using bert-base-uncased:

from knowledge_neurons import KnowledgeNeurons, initialize_model_and_tokenizer, model_type
import random

# first initialize some hyperparameters
MODEL_NAME = "bert-base-uncased"

# to find the knowledge neurons, we need the same 'facts' expressed in multiple different ways, and a ground truth
TEXTS = [
    "Sarah was visiting [MASK], the capital of france",
    "The capital of france is [MASK]",
    "[MASK] is the capital of france",
    "France's capital [MASK] is a hotspot for romantic vacations",
    "The eiffel tower is situated in [MASK]",
    "[MASK] is the most populous city in france",
    "[MASK], france's capital, is one of the most popular tourist destinations in the world",
]
TEXT = TEXTS[0]
GROUND_TRUTH = "paris"

# these are some hyperparameters for the integrated gradients step
BATCH_SIZE = 20
STEPS = 20 # number of steps in the integrated grad calculation
ADAPTIVE_THRESHOLD = 0.3 # in the paper, they find the threshold value `t` by multiplying the max attribution score by some float - this is that float.
P = 0.5 # the threshold for the sharing percentage

# setup model & tokenizer
model, tokenizer = initialize_model_and_tokenizer(MODEL_NAME)

# initialize the knowledge neuron wrapper with your model, tokenizer and a string expressing the type of your model ('gpt2' / 'gpt_neo' / 'bert')
kn = KnowledgeNeurons(model, tokenizer, model_type=model_type(MODEL_NAME))

# use the integrated gradients technique to find some refined neurons for your set of prompts
refined_neurons = kn.get_refined_neurons(
    TEXTS,
    GROUND_TRUTH,
    p=P,
    batch_size=BATCH_SIZE,
    steps=STEPS,
    coarse_adaptive_threshold=ADAPTIVE_THRESHOLD,
)

# suppress the activations at the refined neurons + test the effect on a relevant prompt
# 'results_dict' is a dictionary containing the probability of the ground truth being generated before + after modification, as well as other info
# 'unpatch_fn' is a function you can use to undo the activation suppression in the model. 
# By default, the suppression is removed at the end of any function that applies a patch, but you can set 'undo_modification=False', 
# run your own experiments with the activations / weights still modified, then run 'unpatch_fn' to undo the modifications
results_dict, unpatch_fn = kn.suppress_knowledge(
    TEXT, GROUND_TRUTH, refined_neurons
)

# suppress the activations at the refined neurons + test the effect on an unrelated prompt
results_dict, unpatch_fn = kn.suppress_knowledge(
    "[MASK] is the official language of the solomon islands",
    "english",
    refined_neurons,
)

# enhance the activations at the refined neurons + test the effect on a relevant prompt
results_dict, unpatch_fn = kn.enhance_knowledge(TEXT, GROUND_TRUTH, refined_neurons)

# erase the weights of the output ff layer at the refined neurons (replacing them with zeros) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="zero"
)

# erase the weights of the output ff layer at the refined neurons (replacing them with an unk token) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="unk"
)

# edit the weights of the output ff layer at the refined neurons (replacing them with the word embedding of 'target') + test the effect
# we can make the model think the capital of france is London!
results_dict, unpatch_fn = kn.edit_knowledge(
    TEXT, target="london", neurons=refined_neurons
)

for bert models, the position where the "[MASK]" token is located is used to evaluate the knowledge neurons, (and the ground truth should be what the mask token is expected to be), but due to the nature of GPT models, the last position in the prompt is used by default, and the ground truth is expected to immediately follow.

In GPT models, due to the subword tokenization, the integrated gradients are taken n times, where n is the length of the expected ground truth in tokens, and the mean of the integrated gradients at each step is taken.

for bert models, the ground truth is currently expected to be a single token. Multi-token ground truths are on the todo list.

Evaluations on the PARAREL dataset

To ensure that the repo works correctly, figures 3 and 4 from the knowledge neurons paper are reproduced below. In general the results appear similar, except suppressing unrelated facts appears to have a little more of an affect in this repo than in the paper's original results.*

Below are Dai et al's, and our result, respectively, for suppressing the activations of the refined knowledge neurons in pararel: knowledge neuron suppression / dai et al. knowledge neuron suppression / ours

And Dai et al's, and our result, respectively, for enhancing the activations of the knowledge neurons: knowledge neuron enhancement / dai et al. knowledge neuron enhancement / ours

To find the knowledge neurons in bert-base-uncased for the PARAREL dataset, and replicate figures 3. and 4. from the paper, you can run

# find knowledge neurons + test suppression / enhancement (this will take a day or so on a decent gpu) 
# you can skip this step since the results are provided in `bert_base_uncased_neurons`
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE pararel_evaluate.py
# plot results 
python plot_pararel_results.py

*It's unclear where the difference comes from, but my suspicion is they made sure to only select facts with different relations, whereas in the plots below, only a different pararel UUID was selected. In retrospect, this could actually express the same fact, so I'll rerun these experiments soon.

TODO:

  • Better documentation
  • Publish PARAREL results for bert-base-multilingual-uncased
  • Publish PARAREL results for bert-large-uncased
  • Publish PARAREL results for bert-large-multilingual-uncased
  • Multiple masked tokens for bert models
  • Find good dataset for GPT-like models to evaluate knowledge neurons (PARAREL isn't applicable since the tail entities aren't always at the end of the sentence)
  • Add negative examples for getting refined neurons (i.e expressing a different fact in the same way)
  • Look into different attribution methods (cf. https://arxiv.org/pdf/2010.02695.pdf)

Citations

@article{Dai2021KnowledgeNI,
  title={Knowledge Neurons in Pretrained Transformers},
  author={Damai Dai and Li Dong and Y. Hao and Zhifang Sui and Furu Wei},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.08696}
}
Owner
EleutherAI
EleutherAI
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022