(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

Overview

(CVPR 2022) TokenCut

Pytorch implementation of Tokencut:

Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L. Crowley, Dominique Vaufreydaz

[Project page] [Paper] Colab demo Hugging Face Spaces

TokenCut teaser

If our project is helpful for your research, please consider citing :

@inproceedings{wang2022tokencut,
          title={Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut},
          author={Wang, Yangtao and Shen, Xi and Hu, Shell Xu and Yuan, Yuan and Crowley, James L. and Vaufreydaz, Dominique},
          booktitle={Conference on Computer Vision and Pattern Recognition}
          year={2022}
        }

Table of Content

1. Updates

03/10/2022 Creating a 480p Demo using Gradio. Try out the Web Demo: Hugging Face Spaces

Internet image results:

TokenCut visualizations TokenCut visualizations TokenCut visualizations TokenCut visualizations

02/26/2022 Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

02/26/2022 A simple TokenCut Colab Demo is available.

02/21/2022 Initial commit: Code of TokenCut is released, including evaluation of unsupervised object discovery, unsupervised saliency object detection, weakly supervised object locolization.

2. Installation

2.1 Dependencies

This code was implemented with Python 3.7, PyTorch 1.7.1 and CUDA 11.2. Please refer to the official installation. If CUDA 10.2 has been properly installed :

pip install torch==1.7.1 torchvision==0.8.2

In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

2.2 Data

We provide quick download commands in DOWNLOAD_DATA.md for VOC2007, VOC2012, COCO, CUB, ImageNet, ECSSD, DUTS and DUT-OMRON as well as DINO checkpoints.

3. Quick Start

3.1 Detecting an object in one image

We provide TokenCut visualization for bounding box prediction and attention map. Using all for all visualization results.

python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize pred
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize attn
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize all 

3.2 Segmenting a salient region in one image

We provide TokenCut segmentation results as follows:

cd unsupervised_saliency_detection 
python get_saliency.py --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --vit-arch small --patch-size 16 --img-path ../examples/VOC07_000036.jpg --out-dir ./output

4. Evaluation

Following are the different steps to reproduce the results of TokenCut presented in the paper.

4.1 Unsupervised object discovery

TokenCut visualizations TokenCut visualizations TokenCut visualizations

PASCAL-VOC

In order to apply TokenCut and compute corloc results (VOC07 68.8, VOC12 72.1), please launch:

python main_tokencut.py --dataset VOC07 --set trainval
python main_tokencut.py --dataset VOC12 --set trainval

If you want to extract Dino features, which corresponds to the KEY features in DINO:

mkdir features
python main_lost.py --dataset VOC07 --set trainval --save-feat-dir features/VOC2007

COCO

Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 58.8), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_tokencut.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 68.8 72.1 58.8
ViT-S/8 DINO 67.3 71.6 60.7
ViT-B/16 DINO 68.8 72.4 59.0

Previous results on the dataset VOC07 can be obtained by launching:

python main_tokencut.py --dataset VOC07 --set trainval #VIT-S/16
python main_tokencut.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_tokencut.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16

4.2 Unsupervised saliency detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

To evaluate on ECSSD, DUTS, DUT_OMRON dataset:

python get_saliency.py --out-dir ECSSD --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset ECSSD

python get_saliency.py --out-dir DUTS --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUTS

python get_saliency.py --out-dir DUT --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUT

This should give:

Method ECSSD DUTS DUT-OMRON
maxF IoU Acc maxF IoU Acc maxF IoU Acc
TokenCut 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
TokenCut + BS 87.4 77.2 93.4 75.5 62,4 91.4 69.7 61.8 89.7

4.3 Weakly supervised object detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

Fintune DINO small on CUB

To finetune ViT-S/16 on CUB on a single node with 4 gpus for 1000 epochs run:

python -m torch.distributed.launch --nproc_per_node=4 main.py --data_path /path/to/data --batch_size_per_gpu 256 --dataset cub --weight_decay 0.005 --pretrained_weights ./dino_deitsmall16_pretrain.pth --epoch 1000 --output_dir ./path/to/checkpoin --lr 2e-4 --warmup-epochs 50 --num_labels 200 --num_workers 16 --n_last_blocks 1 --avgpool_patchtokens true --arch vit_small --patch_size 16

Evaluation on CUB

To evaluate a fine-tuned ViT-S/16 on CUB val with a single GPU run:

python eval.py --pretrained_weights ./path/to/checkpoint --dataset cub --data_path ./path/to/data --batch_size_per_gpu 1 --no_center_crop

This should give:

Top1_cls: 79.12, top5_cls94.80, gt_loc: 0.914, top1_loc:0.723

Evaluate on Imagenet

To Evaluate ViT-S/16 finetuned on ImageNet val with a single GPU run:

python eval.py --pretrained_weights /path/to/checkpoint --classifier_weights /path/to/linear_weights--dataset imagenet --data_path ./path/to/data --batch_size_per_gpu 1 --num_labels 1000 --batch_size_per_gpu 1 --no_center_crop --input_size 256 --tau 0.2 --patch_size 16 --arch vit_small

5. Acknowledgement

TokenCut code is built on top of LOST, DINO, Segswap, and Bilateral_Sovlver. We would like to sincerely thanks those authors for their great works.

Owner
YANGTAO WANG
PhD, Computer Vision, Deep Learning
YANGTAO WANG
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022