Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

Related tags

Deep LearningGLAT
Overview

GLAT

Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

Requirements

  • Python >= 3.7
  • Pytorch >= 1.5.0
  • Fairseq 1.0.0a0

Preparation

Train an autoregressive Transformer according to the instructions in Fairseq.

Use the trained autoregressive Transformer to generate target sentences for the training set.

Binarize the distilled training data.

input_dir=path_to_raw_text_data
data_dir=path_to_binarized_output
src=source_language
tgt=target_language
python3 fairseq_cli/preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref ${input_dir}/train \
    --validpref ${input_dir}/valid --testpref ${input_dir}/test --destdir ${data_dir}/ \
    --workers 32 --src-dict ${input_dir}/dict.${src}.txt --tgt-dict {input_dir}/dict.${tgt}.txt

Train

save_path=path_for_saving_models
python3 train.py ${data_dir} --arch glat --noise full_mask --share-all-embeddings \
    --criterion glat_loss --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --stop-min-lr 1e-9 \
    --lr-scheduler inverse_sqrt --warmup-updates 4000 --optimizer adam --adam-betas '(0.9, 0.999)' \
    --adam-eps 1e-6 --task translation_lev_modified --max-tokens 8192 --weight-decay 0.01 --dropout 0.1 \
    --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 \
    --max-source-positions 1000 --max-target-positions 1000 --max-update 300000 --seed 0 --clip-norm 5\
    --save-dir ${save_path} --src-embedding-copy --pred-length-offset --log-interval 1000 \
    --eval-bleu --eval-bleu-args '{"iter_decode_max_iter": 0, "iter_decode_with_beam": 1}' \
    --eval-tokenized-bleu --eval-bleu-remove-bpe --best-checkpoint-metric bleu \
    --maximize-best-checkpoint-metric --decoder-learned-pos --encoder-learned-pos \
    --apply-bert-init --activation-fn gelu --user-dir glat_plugins \

Inference

checkpoint_path=path_to_your_checkpoint
python3 fairseq_cli/generate.py ${data_dir} --path ${checkpoint_path} --user-dir glat_plugins \
    --task translation_lev_modified --remove-bpe --max-sentences 20 --source-lang ${src} --target-lang ${tgt} \
    --quiet --iter-decode-max-iter 0 --iter-decode-eos-penalty 0 --iter-decode-with-beam 1 --gen-subset test

The script for averaging checkpoints is scripts/average_checkpoints.py

level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022