Boundary IoU API (Beta version)

Overview

Boundary IoU API (Beta version)

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov

[arXiv] [Project] [BibTeX]

This API is an experimental version of Boundary IoU for 5 datasets:

To install Boundary IoU API, run:

pip install git+https://github.com/bowenc0221/boundary-iou-api.git

or

git clone [email protected]:bowenc0221/boundary-iou-api.git
cd boundary_iou_api
pip install -e .

Summary of usage

We provide two ways to use this api, you can either replace imports with our api or do offline evaluation.

Replacing imports

Our Boundary IoU API supports both evaluation with Mask IoU and Boundary IoU with the same interface as original ones. Thus, you only need to change the import, without worried about breaking your existing code.

  1. COCO instance segmentation
    replace

    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    with

    from boundary_iou.coco_instance_api.coco import COCO
    from boundary_iou.coco_instance_api.cocoeval import COCOeval

    and set

    COCOeval(..., iouType="boundary")
  2. LVIS instance segmentation
    replace

    from lvis import LVISEval

    with

    from boundary_iou.lvis_instance_api.eval import LVISEval

    and set

    LVISEval(..., iou_type="boundary")
  3. Cityscapes instance segmentation
    replace

    import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval

    with

    import boundary_iou.cityscapes_instance_api.evalInstanceLevelSemanticLabeling as cityscapes_eval

    and set

    cityscapes_eval.args.iou_type = "boundary"
  4. COCO panoptic segmentation
    replace

    from panopticapi.evaluation import pq_compute

    with

    from boundary_iou.coco_panoptic_api.evaluation import pq_compute

    and set

    pq_compute(..., iou_type="boundary")
  5. Cityscapes panoptic segmentation
    replace

    from cityscapesscripts.evaluation.evalPanopticSemanticLabeling as evaluatePanoptic

    with

    from boundary_iou.cityscapes_panoptic_api.evalPanopticSemanticLabeling import evaluatePanoptic

    and set

    evaluatePanoptic(..., iou_type="boundary")

Offline evaluation

We also provide evaluation code that can evaluates your prediction files for each dataset.

  1. COCO instance segmentation

    python ./tools/coco_instance_evaluation.py \
        --gt-json-file COCO_GT_JSON \
        --dt-json-file COCO_DT_JSON \
        --iou-type boundary
  2. LVIS instance segmentation

    python ./tools/lvis_instance_evaluation.py \
        --gt-json-file LVIS_GT_JSON \
        --dt-json-file LVIS_DT_JSON \
        --iou-type boundary
  3. Cityscapes instance segmentation

    python ./tools/cityscapes_instance_evaluation.py \
        --gt_dir GT_DIR \
        --result_dir RESULT_DIR \
        --iou-type boundary
  4. COCO panoptic segmentation

    python ./tools/coco_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary
  5. Cityscapes panoptic segmentation

    python ./tools/cityscapes_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary

Citing Boundary IoU

If you find Boundary IoU helpful in your research or wish to refer to the referenced results, please use the following BibTeX entry.

@inproceedings{cheng2021boundary,
  title={Boundary {IoU}: Improving Object-Centric Image Segmentation Evaluation},
  author={Bowen Cheng and Ross Girshick and Piotr Doll{\'a}r and Alexander C. Berg and Alexander Kirillov},
  booktitle={CVPR},
  year={2021}
}

Contact

If you have any questions regarding this API, please contact us at bcheng9 AT illinois.edu

Owner
Bowen Cheng
Ph.D. at University of Illinois Urbana-Champaign
Bowen Cheng
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022