Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Related tags

Deep LearningABINet
Overview

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

The official code of ABINet (CVPR 2021, Oral).

ABINet uses a vision model and an explicit language model to recognize text in the wild, which are trained in end-to-end way. The language model (BCN) achieves bidirectional language representation in simulating cloze test, additionally utilizing iterative correction strategy.

framework

Runtime Environment

  • We provide a pre-built docker image using the Dockerfile from docker/Dockerfile

  • Running in Docker

    $ [email protected]:FangShancheng/ABINet.git
    $ docker run --gpus all --rm -ti --ipc=host -v $(pwd)/ABINet:/app fangshancheng/fastai:torch1.1 /bin/bash
    
  • (Untested) Or using the dependencies

    pip install -r requirements.txt
    

Datasets

  • Training datasets

    1. MJSynth (MJ):
    2. SynthText (ST):
    3. WikiText103, which is only used for pre-trainig language models:
  • Evaluation datasets, LMDB datasets can be downloaded from BaiduNetdisk(passwd:1dbv), GoogleDrive.

    1. ICDAR 2013 (IC13)
    2. ICDAR 2015 (IC15)
    3. IIIT5K Words (IIIT)
    4. Street View Text (SVT)
    5. Street View Text-Perspective (SVTP)
    6. CUTE80 (CUTE)
  • The structure of data directory is

    data
    ├── charset_36.txt
    ├── evaluation
    │   ├── CUTE80
    │   ├── IC13_857
    │   ├── IC15_1811
    │   ├── IIIT5k_3000
    │   ├── SVT
    │   └── SVTP
    ├── training
    │   ├── MJ
    │   │   ├── MJ_test
    │   │   ├── MJ_train
    │   │   └── MJ_valid
    │   └── ST
    ├── WikiText-103.csv
    └── WikiText-103_eval_d1.csv
    

Pretrained Models

Get the pretrained models from BaiduNetdisk(passwd:kwck), GoogleDrive. Performances of the pretrained models are summaried as follows:

Model IC13 SVT IIIT IC15 SVTP CUTE AVG
ABINet-SV 97.1 92.7 95.2 84.0 86.7 88.5 91.4
ABINet-LV 97.0 93.4 96.4 85.9 89.5 89.2 92.7

Training

  1. Pre-train vision model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_vision_model.yaml
    
  2. Pre-train language model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml
    
  3. Train ABINet
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/train_abinet.yaml
    

Note:

  • You can set the checkpoint path for vision and language models separately for specific pretrained model, or set to None to train from scratch

Evaluation

CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_abinet.yaml --phase test --image_only

Additional flags:

  • --checkpoint /path/to/checkpoint set the path of evaluation model
  • --test_root /path/to/dataset set the path of evaluation dataset
  • --model_eval [alignment|vision] which sub-model to evaluate
  • --image_only disable dumping visualization of attention masks

Visualization

Successful and failure cases on low-quality images:

cases

Citation

If you find our method useful for your reserach, please cite

@article{fang2021read,
  title={Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition},
  author={Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang, Yongdong},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

License

This project is only free for academic research purposes, licensed under the 2-clause BSD License - see the LICENSE file for details.

Feel free to contact [email protected] if you have any questions.

A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022